296 research outputs found

    Crystal-field effects in the mixed-valence compounds Yb2M3Ga9 (M= Rh, Ir)

    Full text link
    Magnetic susceptibility, heat capacity, and electrical resistivity measurements have been carried out on single crystals of the intermediate valence compounds Yb2Rh3Ga9 and Yb2Ir3Ga9. These measurements reveal a large anisotropy due apparently to an interplay between crystalline electric field (CEF) and Kondo effects. The temperature dependence of magnetic susceptibility can be modelled using the Anderson impurity model including CEF within an approach based on the Non-Crossing Approximation.Comment: Accepted to Phys. Rev.

    Quantum Criticality in doped CePd_1-xRh_x Ferromagnet

    Full text link
    CePd_1-xRh_x alloys exhibit a continuous evolution from ferromagnetism (T_C= 6.5 K) at x = 0 to a mixed valence (MV) state at x = 1. We have performed a detailed investigation on the suppression of the ferromagnetic (F) phase in this alloy using dc-(\chi_dc) and ac-susceptibility (\chi_ac), specific heat (C_m), resistivity (\rho) and thermal expansion (\beta) techniques. Our results show a continuous decrease of T_C (x) with negative curvature down to T_C = 3K at x*= 0.65, where a positive curvature takes over. Beyond x*, a cusp in cac is traced down to T_C* = 25 mK at x = 0.87, locating the critical concentration between x = 0.87 and 0.90. The quantum criticality of this region is recognized by the -log(T/T_0) dependence of C_m/T, which transforms into a T^-q (~0.5) one at x = 0.87. At high temperature, this system shows the onset of valence instability revealed by a deviation from Vegard's law (at x_V~0.75) and increasing hybridization effects on high temperature \chi_dc and \rho. Coincidentally, a Fermi liquid contribution to the specific heat arises from the MV component, which becomes dominant at the CeRh limit. In contrast to antiferromagnetic systems, no C_m/T flattening is observed for x > x_cr rather the mentioned power law divergence, which coincides with a change of sign of \beta. The coexistence of F and MV components and the sudden changes in the T dependencies are discussed in the context of randomly distributed magnetic and Kondo couplings.Comment: 11 pages, 11 figure

    Low temperature magnetic phase diagram of the cubic non-Fermi liquid system CeIn_(3-x)Sn_x

    Full text link
    In this paper we report a comprehensive study of the magnetic susceptibility (\chi), resistivity (\rho), and specific heat (C_P), down to 0.5 K of the cubic CeIn_(3-x)Sn_x alloy. The ground state of this system evolves from antiferromagnetic (AF) in CeIn_3(T_N=10.2 K) to intermediate-valent in CeSn_3, and represents the first example of a Ce-lattice cubic non-Fermi liquid (NFL) system where T_N(x) can be traced down to T=0 over more than a decade of temperature. Our results indicate that the disappearance of the AF state occurs near x_c ~ 0.7, although already at x ~ 0.4 significant modifications of the magnetic ground state are observed. Between these concentrations, clear NFL signatures are observed, such as \rho(T)\approx \rho_0 + A T^n (with n<1.5) and C_P(T)\propto -T ln(T) dependencies. Within the ordered phase a first order phase transition occurs for 0.25 < x < 0.5. With larger Sn doping, different weak \rho(T) dependencies are observed at low temperatures between x=1 and x=3 while C_P/T shows only a weak temperature dependence.Comment: 7 pages, 7 figures. Accepted in Eur. J. Phys.

    Iron oxidation at low temperature (260–500 C) in air and the effect of water vapor

    Get PDF
    The oxidation of iron has been studied at low temperatures (between 260 and 500 C) in dry air or air with 2 vol% H2O, in the framework of research on dry corrosion of nuclear waste containers during long-term interim storage. Pure iron is regarded as a model material for low-alloyed steel. Oxidation tests were performed in a thermobalance (up to 250 h) or in a laboratory furnace (up to 1000 h). The oxide scales formed were characterized using SEM-EDX, TEM, XRD, SIMS and EBSD techniques. The parabolic rate constants deduced from microbalance experiments were found to be in good agreement with the few existing values of the literature. The presence of water vapor in air was found to strongly influence the transitory stages of the kinetics. The entire structure of the oxide scale was composed of an internal duplex magnetite scale made of columnar grains and an external hematite scale made of equiaxed grains. 18O tracer experiments performed at 400 C allowed to propose a growth mechanism of the scale

    Predictors of mortality following emergency open colectomy for ischemic colitis: A single-center experience

    Get PDF
    Background: Ischemic colitis (IC) is a severe emergency in gastrointestinal surgery. The aim of the present study was to identify the predictors of postoperative mortality after emergent open colectomy for IC treatment. Additionally, we compared postoperative outcomes of patients undergoing emergent colectomy due to aortic surgery-related IC (AS-IC group) vs. other IC etiologies (Other-IC group). Methods: We analyzed records of consecutive patients who underwent emergency open colectomy for IC between 2008 and 2019. Logistic regression analysis was performed to identify clinical and operative parameters associated with postoperative mortality. The AS-IC and Other-IC groups were compared for mortality, morbidity, ICU stay, hospital stay, and survival. Results: During the study period, 94 patients (mean age, 67.4 ± 13.7 years) underwent emergent open colectomy for IC. In the majority of cases, IC involved the entire colon (53.2%) and vasopressor agents were required preoperatively (63.8%) and/or intraoperatively (78.8%). Thirty-four patients underwent surgery due to AS-IC, whereas 60 due to Other-IC causes. In the AS-IC group, 9 patients had undergone endovascular aortic repair and 25 open aortic surgery; 61.8% of patients needed aortic surgery for ruptured abdominal aortic aneurism (AAA). Overall, 66 patients (70.2%) died within 90 days from surgery. The AS-IC and Other-IC groups showed similar operative outcomes and postoperative complication rates. However, the duration of the ICU stay (19 days vs. 11 days; p = 0.003) and of the total hospital stay (22 days vs. 16 days; p = 0.016) was significantly longer for the AS-IC group than for the Other-IC group. The rate of intestinal continuity restoration at 1 year after surgery was higher for the Other-IC group than for the AS-IC group (58.8% vs. 22.2%; p = 0.05). In the multivariate model, preoperative increased lactate levels, a delay between signs/symptoms' onset and surgery &gt; 12 h, and the occurrence of postoperative acute kidney injury were statistically associated with postoperative mortality. Neither IC etiology (aortic surgery vs. other etiology) nor ruptured AAA was associated with postoperative mortality. Conclusion: Emergency open colectomy for IC is associated with high postoperative mortality, which appears to be unrelated to the IC etiology. Preoperative lactate levels, &gt; 12-h delay to surgery, and postoperative acute kidney injury are independent predictors of postoperative mortality

    Transport in Quantum Dots from the Integrability of the Anderson Model

    Full text link
    In this work we exploit the integrability of the two-lead Anderson model to compute transport properties of a quantum dot, in and out of equilibrium. Our method combines the properties of integrable scattering together with a Landauer-Buttiker formalism. Although we use integrability, the nature of the problem is such that our results are not generically exact, but must only be considered as excellent approximations which nonetheless are valid all the way through crossover regimes. The key to our approach is to identify the excitations that correspond to scattering states and then to compute their associated scattering amplitudes. We are able to do so both in and out of equilibrium. In equilibrium and at zero temperature, we reproduce the Friedel sum rule for an arbitrary magnetic field. At finite temperature, we study the linear response conductance at the symmetric point of the Anderson model, and reproduce Costi et al.'s numerical renormalization group computation of this quantity. We then explore the out-of-equilibrium conductance for a near-symmetric Anderson model, and arrive at quantitative expressions for the differential conductance, both in and out of a magnetic field. We find the expected splitting of the differential conductance peak into two in a finite magnetic field, HH. We determine the width, height, and position of these peaks. In particular we find for H >> T_k, the Kondo temperature, the differential conductance has maxima of e^2/h occuring for a bias V close to but smaller than H. The nature of our construction of scattering states suggests that our results for the differential magneto-conductance are not merely approximate but become exact in the large field limit.Comment: 88 pages, 16 figures, uses harvmac.te

    Energy scales of Lu(1-x)Yb(x)Rh2Si2 by means of thermopower investigations

    Full text link
    We present the thermopower S(T) and the resistivity rho(T) of Lu(1-x)Yb(x)Rh2Si2 in the temperature range 3 K < T < 300 K. S(T) is found to change from two minima for dilute systems (x < 0.5) to a single large minimum in pure YbRh2Si2. A similar behavior has also been found for the magnetic contribution to the resistivity rho_mag(T). The appearance of the low-T extrema in S(T) and rho_mag(T) is attributed to the lowering of the Kondo scale with decreasing x. The evolution of the characteristic energy scales for both the Kondo effect and the crystal electric field splitting are deduced. An extrapolation allows to estimate the Kondo temperature of YbRh2Si2 to 29 K.Comment: 15 pages, 4 figures, accepted in Phys. Rev.

    Mass-Enhanced Fermi Liquid Ground State in Na1.5_{1.5}Co2_2O4_4

    Full text link
    Magnetic, transport, and specific heat measurements have been performed on layered metallic oxide Na1.5_{1.5}Co2_2O4_4 as a function of temperature TT. Below a characteristic temperature TT^*=30-40 K, electrical resistivity shows a metallic conductivity with a T2T^2 behavior and magnetic susceptibility deviates from the Curie-Weiss behavior showing a broad peak at \sim14 K. The electronic specific heat coefficient γ\gamma is \sim60 mJ/molK2^2 at 2 K. No evidence for magnetic ordering is found. These behaviors suggest the formation of mass-enhanced Fermi liquid ground state analogous to that in dd-electron heavy fermion compound LiV2_2O4_4.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B 69 (2004

    Thermodynamic analysis of the Quantum Critical behavior of Ce-lattice compounds

    Full text link
    A systematic analysis of low temperature magnetic phase diagrams of Ce compounds is performed in order to recognize the thermodynamic conditions to be fulfilled by those systems to reach a quantum critical regime and, alternatively, to identify other kinds of low temperature behaviors. Based on specific heat (CmC_m) and entropy (SmS_m) results, three different types of phase diagrams are recognized: i) with the entropy involved into the ordered phase (SMOS_{MO}) decreasing proportionally to the ordering temperature (TMOT_{MO}), ii) those showing a transference of degrees of freedom from the ordered phase to a non-magnetic component, with their Cm(TMO)C_m(T_{MO}) jump (ΔCm\Delta C_m) vanishing at finite temperature, and iii) those ending in a critical point at finite temperature because their ΔCm\Delta C_m do not decrease with TMOT_{MO} producing an entropy accumulation at low temperature. Only those systems belonging to the first case, i.e. with SMO0S_{MO}\to 0 as TMO0T_{MO}\to 0, can be regarded as candidates for quantum critical behavior. Their magnetic phase boundaries deviate from the classical negative curvature below T2.5T\approx 2.5\,K, denouncing frequent misleading extrapolations down to T=0. Different characteristic concentrations are recognized and analyzed for Ce-ligand alloyed systems. Particularly, a pre-critical region is identified, where the nature of the magnetic transition undergoes significant modifications, with its Cm/T\partial C_m/\partial T discontinuity strongly affected by magnetic field and showing an increasing remnant entropy at T0T\to 0. Physical constraints arising from the third law at T0T\to 0 are discussed and recognized from experimental results
    corecore