4,782 research outputs found
Dynamics of electrostatically-driven granular media. Effects of Humidity
We performed experimental studies of the effect of humidity on the dynamics
of electrostatically-driven granular materials. Both conducting and dielectric
particles undergo a phase transition from an immobile state (granular solid) to
a fluidized state (granular gas) with increasing applied field. Spontaneous
precipitation of solid clusters from the gas phase occurs as the external
driving is decreased. The clustering dynamics in conducting particles is
primarily controlled by screening of the electric field but is aided by
cohesion due to humidity. It is shown that humidity effects dominate the
clustering process with dielectric particles.Comment: 4 pages, 4 fig
SN 2016jhj at redshift 0.34: extending the Type II supernova Hubble diagram using the standard candle method
Although Type Ia supernova cosmology has now reached a mature state, it is important to develop as many independent methods as possible to understand the true nature of dark energy. Recent studies have shown that Type II supernovae (SNe II) offer such a path and could be used as alternative distance indicators. However, the majority of these studies were unable to extend the Hubble diagram above redshift z = 0.3 because of observational limitations. Here, we show that we are now ready to move beyond low redshifts and attempt high-redshift (z ≳ 0.3) SN II cosmology as a result of new-generation deep surveys such as the Subaru/Hyper Suprime-Cam survey. Applying the ´standard candle method´ to SN 2016jhj (z = 0.3398 ± 0.0002; discovered by HSC) together with a low-redshift sample, we are able to construct the highest-redshift SN II Hubble diagram to date with an observed dispersion of 0.27 mag (i.e. 12-13 per cent in distance). This work demonstrates the bright future of SN II cosmology in the coming era of large, wide-field surveys like that of the Large Synoptic Survey Telescope.Fil: de Jaeger, T.. University of California at Berkeley; Estados UnidosFil: Galbany, L.. University of Pittsburgh at Johnstown; Estados UnidosFil: Filippenko, A. V.. University of California at Berkeley; Estados UnidosFil: González Gaitán, S.. Universidad de Chile; ChileFil: Yasuda, N.. University of Tokio; JapĂłnFil: Maeda, K.. University of Tokio; JapĂłnFil: Tanaka, M.. University of Tokio; JapĂłnFil: Morokuma, T.. University of Tokio; JapĂłnFil: Moriya, T. J.. National Astronomical Observatory of Japan; JapĂłnFil: Tominaga, N.. University of Tokyo; JapĂłnFil: Nomoto, Ken’ichi. University of Tokyo; JapĂłnFil: Komiyama, Y.. National Astronomical Observatory of Japan; JapĂłnFil: Anderson, J. P.. European Southern Observatory; ChileFil: Brink, T. G.. University of California at Berkeley; Estados UnidosFil: Carlberg, R. G.. University of Toronto; CanadáFil: Folatelli, Gaston. Universidad Nacional de La Plata. Facultad de Ciencias AstronĂłmicas y GeofĂsicas; Argentina. University of Tokyo; JapĂłnFil: Hamuy, M.. Universidad de Chile; ChileFil: Pignata, G.. Universidad AndrĂ©s Bello; ChileFil: Zheng, W.. University of California at Berkeley; Estados Unido
Type II supernovae as probes of environment metallicity: observations of host HII regions
Spectral modelling of SNII atmospheres indicates a clear dependence of metal
line strengths on progenitor metallicity. This motivates further work to
evaluate the accuracy with which these SNe can be used as metallicity
indicators. To assess this accuracy we present a sample of SNII HII-region
spectroscopy, from which environment abundances are derived. These environment
abundances are compared to the observed strength of metal lines in SN spectra.
Combining our sample with measurements from the literature, we present oxygen
abundances of 119 host HII regions, by extracting emission line fluxes and
using abundance diagnostics. Then, following Dessart et al., these abundances
are compared to equivalent widths of Fe 5018 A at various time and colour
epochs. Our distribution of inferred SNII host HII-region abundances has a
range of ~0.6 dex. We confirm the dearth of SNeII exploding at metallicities
lower than those found (on average) in the Large Magellanic Cloud. The
equivalent width of Fe 5018 A at 50 days post explosion shows a statistically
significant correlation with host HII-region oxygen abundance. The strength of
this correlation increases if one excludes abundance measurements derived far
from SN explosion sites. The correlation significance also increases if we only
analyse a 'gold' IIP sample, and if a colour epoch is used in place of time. In
addition, no evidence is found of correlation between progenitor metallicity
and SN light-curve or spectral properties - except for that stated above with
respect to Fe 5018 A equivalent width - suggesting progenitor metallicity is
not a driving factor in producing the diversity observed in our sample. This
study provides observational evidence of the usefulness of SNII as metallicity
indicators. We finish with a discussion of the methodology needed to use SN
spectra as independent metallicity diagnostics throughout the Universe.Comment: Accepted for publication in Astronomy and Astrophyci
Force distribution in a scalar model for non-cohesive granular material
We study a scalar lattice model for inter-grain forces in static,
non-cohesive, granular materials, obtaining two primary results. (i) The
applied stress as a function of overall strain shows a power law dependence
with a nontrivial exponent, which moreover varies with system geometry. (ii)
Probability distributions for forces on individual grains appear Gaussian at
all stages of compression, showing no evidence of exponential tails. With
regard to both results, we identify correlations responsible for deviations
from previously suggested theories.Comment: 16 pages, 9 figures, Submitted to PR
Exclusion processes with degenerate rates: convergence to equilibrium and tagged particle
Stochastic lattice gases with degenerate rates, namely conservative particle
systems where the exchange rates vanish for some configurations, have been
introduced as simplified models for glassy dynamics. We introduce two
particular models and consider them in a finite volume of size in
contact with particle reservoirs at the boundary. We prove that, as for
non--degenerate rates, the inverse of the spectral gap and the logarithmic
Sobolev constant grow as . It is also shown how one can obtain, via a
scaling limit from the logarithmic Sobolev inequality, the exponential decay of
a macroscopic entropy associated to a degenerate parabolic differential
equation (porous media equation). We analyze finally the tagged particle
displacement for the stationary process in infinite volume. In dimension larger
than two we prove that, in the diffusive scaling limit, it converges to a
Brownian motion with non--degenerate diffusion coefficient.Comment: 25 pages, 3 figure
UBVRIz light curves of 51 type II supernovae
We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four
different surveys during 1986–2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program
(C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values
Electronic and physico-chemical properties of nanmetric boron delta-doped diamond structures
Heavily boron doped diamond epilayers with thicknesses ranging from 40 to less than 2 nm and buried between nominally undoped thicker layers have been grown in two different reactors. Two types of [100]-oriented single crystal diamond substrates were used after being characterized by X-ray white beam topography. The chemical composition and thickness of these so-called deltadoped structures have been studied by secondary ion mass spectrometry, transmission electron microscopy, and spectroscopic ellipsometry. Temperature-dependent Hall effect and four probe
resistivity measurements have been performed on mesa-patterned Hall bars. The temperature dependence of the hole sheet carrier density and mobility has been investigated over a broad temperature range (6K<T<450 K). Depending on the sample, metallic or non-metallic behavior was observed. A hopping conduction mechanism with an anomalous hopping exponent was detected in the non-metallic samples. All metallic delta-doped layers exhibited the same mobility value, around 3.660.8 cm2/Vs, independently of the layer thickness and the substrate type. Comparison with previously published data and theoretical calculations showed that scattering by ionized impurities explained only partially this low common value. None of the delta-layers showed any sign of confinement-induced mobility enhancement, even for thicknesses lower than 2 nm.14 page
- …