2,763 research outputs found

    Re-examination of the possible tidal stream in front of the LMC

    Get PDF
    It has recently been suggested that the stars in a vertical extension of the red clump feature seen in LMC color-magnitude diagrams could belong to a tidal stream of material located in front of that galaxy. If this claim is correct, this foreground concentration of stars could contribute significantly to the rate of gravitational microlensing events observed in the LMC microlensing experiments. Here we present radial velocity measurements of stars in this so-called ``vertical red clump'' (VRC) population. The observed stellar sample, it transpires, has typical LMC kinematics. It is shown that it is improbable that an intervening tidal stream should have the same distribution of radial velocities as the LMC, which is consistent with an earlier study that showed that the VRC feature is more likely a young stellar population in the main body of that galaxy. However, the kinematic data do not discriminate against the possibility that the VRC is an LMC halo population.Comment: 10 pages, 3 figures, 1 table. Accepted for publication in ApJ

    The Solar Neighborhood. XIX. Discovery and Characterization of 33 New Nearby White Dwarf Systems

    Full text link
    We present spectra for 33 previously unclassified white dwarf systems brighter than V = 17 primarily in the southern hemisphere. Of these new systems, 26 are DA, 4 are DC, 2 are DZ, and 1 is DQ. We suspect three of these systems are unresolved double degenerates. We obtained VRI photometry for these 33 objects as well as for 23 known white dwarf systems without trigonometric parallaxes, also primarily in the southern hemisphere. For the 56 objects, we converted the photometry values to fluxes and fit them to a spectral energy distribution using the spectroscopy to determine which model to use (i.e. pure hydrogen, pure helium, or metal-rich helium), resulting in estimates of effective temperature and distance. Eight of the new and 12 known systems are estimated to be within the NStars and Catalogue of Nearby Stars (CNS) horizons of 25 pc, constituting a potential 18% increase in the nearby white dwarf sample. Trigonometric parallax determinations are underway via CTIOPI for these 20 systems. One of the DCs is cool so that it displays absorption in the near infrared. Using the distance determined via trigonometric parallax, we are able to constrain the model-dependent physical parameters and find that this object is most likely a mixed H/He atmosphere white dwarf similar to other cool white dwarfs identified in recent years with significant absorption in the infrared due to collision-induced absorptions by molecular hydrogen.Comment: 33 pages, 10 figures, accepted for publication in the Astronomical Journa

    Composition of Ices in Low-Mass Extrasolar Planets

    Full text link
    We study the formation conditions of icy planetesimals in protoplanetary disks in order to determine the composition of ices in small and cold extrasolar planets. Assuming that ices are formed from hydrates, clathrates, and pure condensates, we calculate their mass fractions with respect to the total quantity of ices included in planetesimals, for a grid of disk models. We find that the composition of ices weakly depends on the adopted disk thermodynamic conditions, and is rather influenced by the initial composition of the gas phase. The use of a plausible range of molecular abundance ratios and the variation of the relative elemental carbon over oxygen ratio in the gas phase of protoplanetary disks, allow us to apply our model to a wide range of planetary systems. Our results can thus be used to constrain the icy/volatile phase composition of cold planets evidenced by microlensing surveys, hypothetical ocean-planets and carbon planets, which could be detected by Corot or Kepler.Comment: Accepted for publication in The Astrophysical Journa

    Glueball operators and the microscopic approach to N=1 gauge theories

    Full text link
    We explain how to generalize Nekrasov's microscopic approach to N=2 gauge theories to the N=1 case, focusing on the typical example of the U(N) theory with one adjoint chiral multiplet X and an arbitrary polynomial tree-level superpotential Tr W(X). We provide a detailed analysis of the generalized glueball operators and a non-perturbative discussion of the Dijkgraaf-Vafa matrix model and of the generalized Konishi anomaly equations. We compute in particular the non-trivial quantum corrections to the Virasoro operators and algebra that generate these equations. We have performed explicit calculations up to two instantons, that involve the next-to-leading order corrections in Nekrasov's Omega-background.Comment: 38 pages, 1 figure and 1 appendix included; v2: typos and the list of references corrected, version to appear in JHE

    Signals for a Transition from Surface to Bulk Emission in Thermal Multifragmentation

    Get PDF
    Excitation-energy-gated two-fragment correlation functions have been studied between 2 to 9A MeV of excitation energy for equilibrium-like sources formed in π\pi^- and p + 197^{197}Au reactions at beam momenta of 8,9.2 and 10.2 GeV/c. Comparison of the data to an N-body Coulomb-trajectory code shows a decrease of one order of magnitude in the fragment emission time in the excitation energy interval 2-5A MeV, followed by a nearly constant breakup time at higher excitation energy. The observed decrease in emission time is shown to be strongly correlated with the increase of the fragment emission probability, and the onset of thermally-induced radial expansion. This result is interpreted as evidence consistent with a transition from surface-dominated to bulk emission expected for spinodal decomposition.Comment: 11 pages including 3 postscript figures (1 color

    Abell 41: shaping of a planetary nebula by a binary central star?

    Full text link
    We present the first detailed spatio-kinematical analysis and modelling of the planetary nebula Abell 41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evolution of planetary nebulae with binary central stars as current evolutionary theories predict that the binary plane should be aligned perpendicular to the symmetry axis of the nebula. Deep narrowband imaging in the light of [NII], [OIII] and [SII], obtained using ACAM on the William Herschel Telescope, has been used to investigate the ionisation structure of Abell 41. Longslit observations of the H-alpha and [NII] emission were obtained using the Manchester Echelle Spectrometer on the 2.1-m San Pedro M\'artir Telescope. These spectra, combined with the narrowband imagery, were used to develop a spatio-kinematical model of [NII] emission from Abell 41. The best fitting model reveals Abell 41 to have a waisted, bipolar structure with an expansion velocity of ~40km\s at the waist. The symmetry axis of the model nebula is within 5\degr of perpendicular to the orbital plane of the central binary system. This provides strong evidence that the close-binary system, MT Ser, has directly affected the shaping of its nebula, Abell 41. Although the theoretical link between bipolar planetary nebulae and binary central stars is long established, this nebula is only the second to have this link, between nebular symmetry axis and binary plane, proved observationally.Comment: 7 pages, 6 figures, Accepted for publication in MNRA

    Methane in the atmosphere of the transiting hot Neptune GJ436b?

    Get PDF
    We present an analysis of seven primary transit observations of the hot Neptune GJ436b at 3.6, 4.5 and 8 μ8~\mum obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. After correcting for systematic effects, we fitted the light curves using the Markov Chain Monte Carlo technique. Combining these new data with the EPOXI, HST and ground-based V,I,HV, I, H and KsK_s published observations, the range 0.510 μ0.5-10~\mum can be covered. Due to the low level of activity of GJ436, the effect of starspots on the combination of transits at different epochs is negligible at the accuracy of the dataset. Representative climate models were calculated by using a three-dimensional, pseudo-spectral general circulation model with idealised thermal forcing. Simulated transit spectra of GJ436b were generated using line-by-line radiative transfer models including the opacities of the molecular species expected to be present in such a planetary atmosphere. A new, ab-initio calculated, linelist for hot ammonia has been used for the first time. The photometric data observed at multiple wavelengths can be interpreted with methane being the dominant absorption after molecular hydrogen, possibly with minor contributions from ammonia, water and other molecules. No clear evidence of carbon monoxide and dioxide is found from transit photometry. We discuss this result in the light of a recent paper where photochemical disequilibrium is hypothesised to interpret secondary transit photometric data. We show that the emission photometric data are not incompatible with the presence of abundant methane, but further spectroscopic data are desirable to confirm this scenario.Comment: 19 pages, 10 figures, 1 table, Astrophysical Journal in pres

    Classical Cepheid Pulsation Models. III. The Predictable Scenario

    Full text link
    Within the current uncertainties in the treatment of the coupling between pulsation and convection, limiting amplitude, nonlinear, convective models appear the only viable approach for providing theoretical predictions about the intrinsic properties of radial pulsators. In this paper we present the results of a comprehensive set of Cepheid models computed within such theoretical framework for selected assumptions on their original chemical composition.Comment: 24 pages, 1 latex file containing 6 tables, 10 postscript figures, accepted for publication on Ap

    Excitation and decay of projectile-like fragments formed in dissipative peripheral collisions at intermediate energies

    Full text link
    Projectile-like fragments (PLF:15<=Z<=46) formed in peripheral and mid-peripheral collisions of 114Cd projectiles with 92Mo nuclei at E/A=50 MeV have been detected at very forward angles, 2.1 deg.<=theta_lab<=4.2 deg. Calorimetric analysis of the charged particles observed in coincidence with the PLF reveals that the excitation of the primary PLF is strongly related to its velocity damping. Furthermore, for a given V_PLF*, its excitation is not related to its size, Z_PLF*. For the largest velocity damping, the excitation energy attained is large, approximately commensurate with a system at the limiting temperatureComment: 5 pages, 6 figure
    corecore