14,912 research outputs found
Development and performance of IR detectors in the 1.5 to 2.4 micrometer region that operate at 240 K
High performance 1.5 to 2.4 micrometers (Hg,Cd)Te photodetectors for operating at 240 K or above are discussed. The detailed characterization of the detector with respect to detector temperature and background flux led to a development of an empirical model for minority carrier trapping. The concept of detective time constant is presented and successfully demonstrated by the four detectors delivered on this contract. An alternative approach is presented with the use of photovoltaic (Hg,Cd)Te detectors
Eccentricity Excitation and Apsidal Resonance Capture in the Planetary System Upsilon Andromedae
The orbits of the outer two known planets orbiting Upsilon Andromedae are
remarkably eccentric. Planet C possesses an orbital eccentricity of e1 = 0.253.
For the more distant planet D, e2 = 0.308. Previous dynamical analyses strongly
suggest that the two orbits are nearly co-planar and are trapped in an apsidal
resonance in which the difference between their longitudes of periastron
undergoes a bounded oscillation about 0 degrees. Here we elucidate the origin
of these large eccentricities and of the apsidal alignment. Resonant
interactions between a remnant circumstellar disk of gas lying exterior to the
orbits of both planets can smoothly grow e2. Secular interactions between
planets D and C can siphon off the eccentricity of the former to grow that of
the latter. Externally amplifying e2 during the phase of the apsidal
oscillation when e2/e1 is smallest drives the oscillation amplitude towards
zero. Thus, the substantial eccentricity of planet C and the locking of orbital
apsides are both consequences of externally pumping the eccentricity of planet
D over timescales exceeding apsidal precession periods of order 1e4 yr. We
explain why the recently detected stellar companion to Upsilon Andromedae is
largely dynamically decoupled from the planetary system.Comment: accepted to Ap
Phase-sensitive quantum effects in Andreev conductance of the SNS system of metals with macroscopic phase breaking length
The dissipative component of electron transport through the doubly connected
SNS Andreev interferometer indium (S)-aluminium (N)-indium (S) has been
studied. Within helium temperature range, the conductance of the individual
sections of the interferometer exhibits phase-sensitive oscillations of
quantum-interference nature. In the non-domain (normal) state of indium
narrowing adjacent to NS interface, the nonresonance oscillations have been
observed, with the period inversely proportional to the area of the
interferometer orifice. In the domain intermediate state of the narrowing, the
magneto-temperature resistive oscillations appeared, with the period determined
by the coherence length in the magnetic field equal to the critical one. The
oscillating component of resonance form has been observed in the conductance of
the macroscopic N-aluminium part of the system. The phase of the oscillations
appears to be shifted by  compared to that of nonresonance oscillations.
We offer an explanation in terms of the contribution into Josephson current
from the coherent quasiparticles with energies of order of the Thouless energy.
The behavior of dissipative transport with temperature has been studied in a
clean normal metal in the vicinity of a single point NS contact.Comment: 9 pages, 7 figures, to be published in Low Temp. Phys., v. 29, No.
  12, 200
An Overview of China's Environmental Governance Problems
The Wind Turbine industry continues to drive towards high market penetrationand profitability. In order to keep Wind Turbines in field for as long as possiblecomputational analysis tools are required. The open source tool QBlade[38] softwarewas extended to now contain routines to analyse the structural properties of WindTurbine blades. This was achieved using 2D integration methods and a Tapered Euler-Bernoulli beam element in order to find the mode shapes and 2D sectional properties.This was a key step towards integrating the National Renewable Energy LaboratoriesFAST package[32] which has the ability to analyse Aeroelastic Responses. The QFEMmodule performed well for the test cases including: hollow isotropic blade, rotatingbeam and tapered beam. Some improvements can be made to the torsion estimationof the 2D sections but this has no effect on the mode shapes required for the FASTsimulations
Testing Gaussian random hypothesis with the cosmic microwave background temperature anisotropies in the three-year WMAP data
We test the hypothesis that the temperature of the cosmic microwave
background is consistent with a Gaussian random field defined on the celestial
sphere, using de-biased internal linear combination (DILC) map produced from
the 3-year WMAP data. We test the phases for spherical harmonic modes with l <=
10 (which should be the cleanest) for their uniformity, randomness, and
correlation with those of the foreground templates. The phases themselves are
consistent with a uniform distribution, but not for l <= 5, and the differences
between phases are not consistent with uniformity. For l=3 and l=6, the phases
of the CMB maps cross-correlate with the foregrounds, suggestion the presence
of residual contamination in the DLC map even on these large scales. We also
use a one-dimensional Fourier representation to assemble a_lm into the \Delta
T_l(\phi) for each l mode, and test the positions of the resulting maxima and
minima for consistency with uniformity randomness on the unit circle. The
results show significant departures at the 0.5% level, with the one-dimensional
peaks being concentrated around \phi=180 degs. This strongly significant
alignment with the Galactic meridian, together with the cross-correlation of
DILC phases with the foreground maps, strongly suggests that even the lowest
spherical harmonic modes in the map are significantly contaminated with
foreground radiation.Comment: submitted to ApJL, one paragraph is added in Section 3 and some more
  in the Referenc
Classic autoimmune type 1 diabetes mellitus after a case of drug reaction with eosinophilia and systemic symptoms (DRESS).
Spin-dependent conductivity of iron-based superconductors in a magnetic field
We report the results of a study of magnetic field features of electron
transport in heterojunctions with NS boundary inside iron-based
superconductors, represented by a binary phase of  - FeSe and
oxyarsenide pnictide LaO(F)FeAs. We used the ability of self magnetic field of
the transport current to partially destroy superconductivity, no matter how low
the field may be, in the NS interface area, where, due to the proximity effect,
the superconducting order parameter, , disperses from 1 to 0 within the
scale of the Ginzburg-Landau coherence length. The following features of
transport were found:(i) at , magnetoresistance in systems with
different superconductors has different sign;(ii) sign and magnitude of the
magnetoresistance depend on the magnitude of current and temperature, and (iii)
in all operating modes where the contribution from Andreev reflection is
suppressed (),the hysteresis of the magnetoresistance
is present. Based on the results of the experiment and analysis it has been
concluded that there is along-range magnetic order in th eground normal state
of the iron-based superconductors studied, in the presence of itinerant
magnetism of conduction electrons which determines the possibility of
anisotropic spin-dependent exchange interaction with the local magnetic moments
of the ions.Comment: 9 pages, 7 figure
- …
