14,912 research outputs found

    Development and performance of IR detectors in the 1.5 to 2.4 micrometer region that operate at 240 K

    Get PDF
    High performance 1.5 to 2.4 micrometers (Hg,Cd)Te photodetectors for operating at 240 K or above are discussed. The detailed characterization of the detector with respect to detector temperature and background flux led to a development of an empirical model for minority carrier trapping. The concept of detective time constant is presented and successfully demonstrated by the four detectors delivered on this contract. An alternative approach is presented with the use of photovoltaic (Hg,Cd)Te detectors

    Eccentricity Excitation and Apsidal Resonance Capture in the Planetary System Upsilon Andromedae

    Full text link
    The orbits of the outer two known planets orbiting Upsilon Andromedae are remarkably eccentric. Planet C possesses an orbital eccentricity of e1 = 0.253. For the more distant planet D, e2 = 0.308. Previous dynamical analyses strongly suggest that the two orbits are nearly co-planar and are trapped in an apsidal resonance in which the difference between their longitudes of periastron undergoes a bounded oscillation about 0 degrees. Here we elucidate the origin of these large eccentricities and of the apsidal alignment. Resonant interactions between a remnant circumstellar disk of gas lying exterior to the orbits of both planets can smoothly grow e2. Secular interactions between planets D and C can siphon off the eccentricity of the former to grow that of the latter. Externally amplifying e2 during the phase of the apsidal oscillation when e2/e1 is smallest drives the oscillation amplitude towards zero. Thus, the substantial eccentricity of planet C and the locking of orbital apsides are both consequences of externally pumping the eccentricity of planet D over timescales exceeding apsidal precession periods of order 1e4 yr. We explain why the recently detected stellar companion to Upsilon Andromedae is largely dynamically decoupled from the planetary system.Comment: accepted to Ap

    Phase-sensitive quantum effects in Andreev conductance of the SNS system of metals with macroscopic phase breaking length

    Full text link
    The dissipative component of electron transport through the doubly connected SNS Andreev interferometer indium (S)-aluminium (N)-indium (S) has been studied. Within helium temperature range, the conductance of the individual sections of the interferometer exhibits phase-sensitive oscillations of quantum-interference nature. In the non-domain (normal) state of indium narrowing adjacent to NS interface, the nonresonance oscillations have been observed, with the period inversely proportional to the area of the interferometer orifice. In the domain intermediate state of the narrowing, the magneto-temperature resistive oscillations appeared, with the period determined by the coherence length in the magnetic field equal to the critical one. The oscillating component of resonance form has been observed in the conductance of the macroscopic N-aluminium part of the system. The phase of the oscillations appears to be shifted by π\pi compared to that of nonresonance oscillations. We offer an explanation in terms of the contribution into Josephson current from the coherent quasiparticles with energies of order of the Thouless energy. The behavior of dissipative transport with temperature has been studied in a clean normal metal in the vicinity of a single point NS contact.Comment: 9 pages, 7 figures, to be published in Low Temp. Phys., v. 29, No. 12, 200

    An Overview of China's Environmental Governance Problems

    Get PDF
    The Wind Turbine industry continues to drive towards high market penetrationand profitability. In order to keep Wind Turbines in field for as long as possiblecomputational analysis tools are required. The open source tool QBlade[38] softwarewas extended to now contain routines to analyse the structural properties of WindTurbine blades. This was achieved using 2D integration methods and a Tapered Euler-Bernoulli beam element in order to find the mode shapes and 2D sectional properties.This was a key step towards integrating the National Renewable Energy LaboratoriesFAST package[32] which has the ability to analyse Aeroelastic Responses. The QFEMmodule performed well for the test cases including: hollow isotropic blade, rotatingbeam and tapered beam. Some improvements can be made to the torsion estimationof the 2D sections but this has no effect on the mode shapes required for the FASTsimulations

    Testing Gaussian random hypothesis with the cosmic microwave background temperature anisotropies in the three-year WMAP data

    Full text link
    We test the hypothesis that the temperature of the cosmic microwave background is consistent with a Gaussian random field defined on the celestial sphere, using de-biased internal linear combination (DILC) map produced from the 3-year WMAP data. We test the phases for spherical harmonic modes with l <= 10 (which should be the cleanest) for their uniformity, randomness, and correlation with those of the foreground templates. The phases themselves are consistent with a uniform distribution, but not for l <= 5, and the differences between phases are not consistent with uniformity. For l=3 and l=6, the phases of the CMB maps cross-correlate with the foregrounds, suggestion the presence of residual contamination in the DLC map even on these large scales. We also use a one-dimensional Fourier representation to assemble a_lm into the \Delta T_l(\phi) for each l mode, and test the positions of the resulting maxima and minima for consistency with uniformity randomness on the unit circle. The results show significant departures at the 0.5% level, with the one-dimensional peaks being concentrated around \phi=180 degs. This strongly significant alignment with the Galactic meridian, together with the cross-correlation of DILC phases with the foreground maps, strongly suggests that even the lowest spherical harmonic modes in the map are significantly contaminated with foreground radiation.Comment: submitted to ApJL, one paragraph is added in Section 3 and some more in the Referenc

    Spin-dependent conductivity of iron-based superconductors in a magnetic field

    Full text link
    We report the results of a study of magnetic field features of electron transport in heterojunctions with NS boundary inside iron-based superconductors, represented by a binary phase of α\alpha - FeSe and oxyarsenide pnictide LaO(F)FeAs. We used the ability of self magnetic field of the transport current to partially destroy superconductivity, no matter how low the field may be, in the NS interface area, where, due to the proximity effect, the superconducting order parameter, Δ\Delta, disperses from 1 to 0 within the scale of the Ginzburg-Landau coherence length. The following features of transport were found:(i) at T<TcT<T_{c}, magnetoresistance in systems with different superconductors has different sign;(ii) sign and magnitude of the magnetoresistance depend on the magnitude of current and temperature, and (iii) in all operating modes where the contribution from Andreev reflection is suppressed ((T+eV)Δ(T + eV) \gtrsim \Delta),the hysteresis of the magnetoresistance is present. Based on the results of the experiment and analysis it has been concluded that there is along-range magnetic order in th eground normal state of the iron-based superconductors studied, in the presence of itinerant magnetism of conduction electrons which determines the possibility of anisotropic spin-dependent exchange interaction with the local magnetic moments of the ions.Comment: 9 pages, 7 figure
    corecore