1,245 research outputs found

    Interactions between trivalent rare earth oxides and mixed [Hbet][Tf2N]:H2O systems in the development of a one-step process for the separation of light from heavy rare earth elements

    Get PDF
    The factors, including ionic liquid:water ratios, temperature, solvent:solute contact times, and the effect of dissolved rare earth metal ions on the [Hbet][Tf2N]:H2O thermometric phase change are determined to develop a process for separating the light from the heavy rare earth metal oxides in [Hbet][Tf2N]:H2O mixtures. The relative solubility data for three light (La2O3, Nd2O3, and Eu2O3), two heavy (Y2O3 and Yb2O3) rare earth metal oxides (REOs), and Gd2O3 at different temperatures and different solute:solvent contact times are reported for 1:1 [Hbet][Tf2N]:H2O. The light REOs dissolve easily at 57 °C with the La and Eu reaching maximum solubility within minutes while the heavy REOs have very low solubilities at this temperature with negligible amounts being dissolved for contact times less than 80 min. Gd2O3 dissolves more slowly than the La, Eu, and Nd oxides at 57 °C reaching maximum solubility only after 160 min. Changing the [Hbet][Tf2N]:H2O ratio from 1:1 to 16:1 increases the time required to dissolve the REOs. The times taken to reach maximum solubility decrease for all of the REOs up to 95 °C, resulting in the separations between the light and heavy rare earth elements, and Gd becoming less distinct. The presence of rare earth metal ions in [Hbet][Tf2N]:H2O results in a reduction in the upper critical solution temperature (UCST) of the solvent from 55.6 °C to as low as 31.8 °C with Gd3+. The best separation of light from heavy REOs is achieved at 57 °C but better separation of Gd from the light REOs is achieved at 40 °C, below the solvent UCST. The best conditions for a one-step separation of light from heavy REOs in [Hbet][Tf2N]:H2O mixtures is achieved with 1:1 [Hbet][Tf2N]:H2O at 57 °C using short contact oxide:solvent times (maximum 5 min). Separations of light from heavy REOs, in waste phosphor samples, containing La2O3, CeO2, Eu2O3, Gd2O3, Tb3O4 and Y2O3, are also achieved even in the presence of high concentrations of heavy REOs using short contact times. The use of [Hbet][Tf2N]:H2O as a means of separating light and heavy REOs is aided by the ease of recycling the solvent which can be recycled and reused at least five times with little loss of solvent quality or efficiency

    Use of extraction chromatography in the recycling of critical metals from thin film Leach solutions

    Get PDF
    Phosphors and optoelectronic thin film electronic device layers contain critical metals including lanthanides and indium that should be recycled. Solvent impregnated resins (SIRs) containing (i) DEHPA (ii) DODGAA and (iii) DODGAA with the ionic liquid [C4mim][Tf2N] are investigated in extraction chromatography methodologies to recover and separate critical metals from dilute solutions that model those leached from thin films. Optimum adsorption of metals occurs at pH 1.5-3.5 but is highest on DODGAA-[C4mim][Tf2N]. The recovery and separation of adsorbed metal species on the DODGAA-[C4mim][Tf2N] SIR resin from solutions containing the glass matrix ions, Ca(II) and Al(III), along with In(III) and Sn(IV) or lanthanide ions is achieved by elution with HNO3. Ca(II) and Al(III) are completely eluted with 0.1M HNO3 retaining the target critical metal species on the resin. Separation of In from Sn is achieved by elution of In(III) with 2.5M HNO3 and Sn(IV) with 5M acid. La is separated from the other lanthanides by elution of La(III) with 2.5M HNO3 and the remaining lanthanides with 5M acid. The SIR resins can be reused over a series of at least five cycles of loading, stripping, and rinsing to reduce reagent costs and achieve economic critical metal recovery by extraction chromatography

    Investigation of the fluid behavior of asphaltenes and toluene insolubles by high-temperature proton nuclear magnetic resonance and rheometry and their application to visbreaking

    Get PDF
    The fluid behavior of asphaltenes at elevated temperatures impacts coke formation in a number of hydrocarbon conversion processes, including visbreaking and delayed coking. In this study, the asphaltenes from a number of sources, namely, a vacuum residue, a petroleum source rock (Kimmeridge clay) bitumen obtained by hydrous pyrolysis, and bitumen products from a sub-bituminous coal and pine wood obtained by thermolytic solvent extraction using tetralin, have been characterized using high-temperature proton nuclear magnetic resonance (1H NMR), and the results correlated with those from small-amplitude oscillatory shear rheometry. Further for comparison, the coke (toluene insolubles) obtained from visbreaking the vacuum residue was also characterized. All of the asphaltenes became completely fluid by 300 °C, with hydrogen being completely mobile with coke formation, identified as a solid phase, not occurring to a significant extent until 450 °C. Extremely good agreement was obtained between high-temperature 1H NMR and rheometry results, which confirmed that the asphaltenes were highly fluid from 300 °C, with initial signs of resolidification being observed at temperatures of around 450 °C. During softening, extremely good correlations between fluid hydrogen and phase angle were obtained as the asphaltenes softened. The toluene insolubles however did contain some fluid material; thus, it cannot be regarded as strictly solid coke, but clearly, with increasing temperature, the fluid material did convert to coke. Under actual process conditions, this fluid material could be responsible for coke adhering to reactor surfaces

    Use of tobacco and e-cigarettes among youth in Great Britain in 2022: analysis of a cross sectional survey

    Get PDF
    Introduction: Although e-cigarettes can be an effective form of nicotine substitution for adults attempting to quit smoking, their use among children and young people is a concern. Accurate data about this are needed to inform debates over policy and regulation in the UK and elsewhere. Methods: Using data from an online survey of 2613 youth aged 11–18 years, conducted by the market research company YouGov in March 2022, we present prevalence estimates of e-cigarette and tobacco use. We use logistic regression models to assess differences in e-cigarette use, tobacco use and use of disposable e-cigarettes across a range of covariates including age, sex, tobacco smoking status, social class, and country. Results: Among the 18.0% of those surveyed who reported ever having smoked a cigarette, 83.9% were not regular (at least once per week) smokers and 16.1% were (15.1% and 2.9% of the total sample, respectively). Among the 19.2% of those surveyed who had ever used an e-cigarette, 79.2% were not regular users, while 20.8% were (15.2% and 4.0% of the total sample, respectively). Regular e-cigarette use was more common than regular tobacco smoking (4.0% vs 2.9%). E-cigarette use was more common among those who also smoked tobacco, with 9.0% of never e-cigarette users ever smoking tobacco, compared with 89.4% of regular e-cigarette users. Both smoking and e-cigarette use were associated with increasing age and use by others within the home, but not with social class. Use of disposable e-cigarettes was reported by 53.8% of those who have ever used an e-cigarette, and more common among females than males. Conclusions: Regular e-cigarette use is now more common than smoking in children and youth, though the majority of this is among those who have also smoked tobacco. Measures to reduce the appeal of both e-cigarettes and tobacco to children and young people are warranted

    Phase Transition in the Number Partitioning Problem

    Full text link
    Number partitioning is an NP-complete problem of combinatorial optimization. A statistical mechanics analysis reveals the existence of a phase transition that separates the easy from the hard to solve instances and that reflects the pseudo-polynomiality of number partitioning. The phase diagram and the value of the typical ground state energy are calculated.Comment: minor changes (references, typos and discussion of results

    NASA space station automation: AI-based technology review. Executive summary

    Get PDF
    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics

    Diagnosis of tuberculosis in groups of badgers: an exploration of the impact of trapping efficiency, infection prevalence and the use of multiple tests

    Get PDF
    Accurate detection of infection with Mycobacterium bovis in live badgers would enable targeted tuberculosis control. Practical challenges in sampling wild badger populations mean that diagnosis of infection at the group (rather than the individual) level is attractive. We modelled data spanning 7 years containing over 2000 sampling events from a population of wild badgers in southwest England to quantify the ability to correctly identify the infection status of badgers at the group level. We explored the effects of variations in: (1) trapping efficiency; (2) prevalence of M. bovis; (3) using three diagnostic tests singly and in combination with one another; and (4) the number of badgers required to test positive in order to classify groups as infected. No single test was able to reliably identify infected badger groups if 80% sensitive, at least 94% specific, and able to be performed rapidly in the field
    • …
    corecore