91 research outputs found

    Bronchial epithelial spheroids: an alternative culture model to investigate epithelium inflammation-mediated COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is characterized by abnormal lung inflammation that exceeds the protective response. Various culture models using epithelial cell lines or primary cells have been used to investigate the contribution of bronchial epithelium in the exaggerated inflammation of COPD. However, these models do not mimic <it>in vivo </it>situations for several reasons (e.g, transformed epithelial cells, protease-mediated dissociation of primary cells, etc.). To circumvent these concerns, we developed a new epithelial cell culture model.</p> <p>Methods</p> <p>Using non transformed non dissociated bronchial epithelium obtained by bronchial brushings from COPD and non-COPD smokers, we developed a 3-dimensional culture model, bronchial epithelial spheroids (BES). BES were analyzed by videomicroscopy, light microscopy, immunofluorescence, and transmission electron microscopy. We also compared the inflammatory responses of COPD and non-COPD BES. In our study, we chose to stimulate BES with lipopolycaccharide (LPS) and measured the release of the pro-inflammatory mediators interleukin-8 (IL-8) and leukotriene B4 (LTB4) and the anti-inflammatory mediator prostaglandin E2 (PGE2).</p> <p>Results</p> <p>BES obtained from both COPD and non-COPD patients were characterized by a polarized bronchial epithelium with tight junctions and ciliary beating, composed of basal cells, secretory cells and ciliated cells. The ciliary beat frequency of ciliated cells was not significantly different between the two groups. Of interest, BES retained their characteristic features in culture up to 8 days. BES released the inflammatory mediators IL-8, PGE2 and LTB4 constitutively and following exposure to LPS. Interestingly, LPS induced a higher release of IL-8, but not PGE2 and LTB4 in COPD BES (p < 0.001) which correlated with lung function changes.</p> <p>Conclusion</p> <p>This study provides for the first time a compelling evidence that the BES model provides an unaltered bronchial surface epithelium. More importantly, BES represent an attractive culture model to investigate the mechanisms of injuring agents that mediate epithelial cell inflammation and its contribution to COPD pathogenesis.</p

    The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum

    Get PDF
    The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders

    RNAi-Mediated Knock-Down of Arylamine N-acetyltransferase-1 Expression Induces E-cadherin Up-Regulation and Cell-Cell Contact Growth Inhibition

    Get PDF
    Arylamine N-acetyltransferase-1 (NAT1) is an enzyme that catalyzes the biotransformation of arylamine and hydrazine substrates. It also has a role in the catabolism of the folate metabolite p-aminobenzoyl glutamate. Recent bioinformatics studies have correlated NAT1 expression with various cancer subtypes. However, a direct role for NAT1 in cell biology has not been established. In this study, we have knocked down NAT1 in the colon adenocarcinoma cell-line HT-29 and found a marked change in cell morphology that was accompanied by an increase in cell-cell contact growth inhibition and a loss of cell viability at confluence. NAT1 knock-down also led to attenuation in anchorage independent growth in soft agar. Loss of NAT1 led to the up-regulation of E-cadherin mRNA and protein levels. This change in E-cadherin was not attributed to RNAi off-target effects and was also observed in the prostate cancer cell-line 22Rv1. In vivo, NAT1 knock-down cells grew with a longer doubling time compared to cells stably transfected with a scrambled RNAi or to parental HT-29 cells. This study has shown that NAT1 affects cell growth and morphology. In addition, it suggests that NAT1 may be a novel drug target for cancer therapeutics

    PIF Genes Mediate the Effect of Sucrose on Seedling Growth Dynamics

    Get PDF
    As photoautotrophs, plants can use both the form and amount of fixed carbon as a measure of the light environment. In this study, we used a variety of approaches to elucidate the role of exogenous sucrose in modifying seedling growth dynamics. In addition to its known effects on germination, high-resolution temporal analysis revealed that sucrose could extend the number of days plants exhibited rapid hypocotyl elongation, leading to dramatic increases in ultimate seedling height. In addition, sucrose changed the timing of daily growth maxima, demonstrating that diel growth dynamics are more plastic than previously suspected. Sucrose-dependent growth promotion required function of multiple phytochrome-interacting factors (PIFs), and overexpression of PIF5 led to growth dynamics similar to plants exposed to sucrose. Consistent with this result, sucrose was found to increase levels of PIF5 protein. PIFs have well-established roles as integrators of response to light levels, time of day and phytohormone signaling. Our findings strongly suggest that carbon availability can modify the known photomorphogenetic signaling network

    Budding Yeast Dma Proteins Control Septin Dynamics and the Spindle Position Checkpoint by Promoting the Recruitment of the Elm1 Kinase to the Bud Neck

    Get PDF
    The first step towards cytokinesis in budding yeast is the assembly of a septin ring at the future site of bud emergence. Integrity of this ring is crucial for cytokinesis, proper spindle positioning, and the spindle position checkpoint (SPOC). This checkpoint delays mitotic exit and cytokinesis as long as the anaphase spindle does not properly align with the division axis. SPOC signalling requires the Kin4 protein kinase and the Kin4-regulating Elm1 kinase, which also controls septin dynamics. Here, we show that the two redundant ubiquitin-ligases Dma1 and Dma2 control septin dynamics and the SPOC by promoting the efficient recruitment of Elm1 to the bud neck. Indeed, dma1 dma2 mutant cells show reduced levels of Elm1 at the bud neck and Elm1-dependent activation of Kin4. Artificial recruitment of Elm1 to the bud neck of the same cells is sufficient to re-establish a normal septin ring, proper spindle positioning, and a proficient SPOC response in dma1 dma2 cells. Altogether, our data indicate that septin dynamics and SPOC function are intimately linked and support the idea that integrity of the bud neck is crucial for SPOC signalling

    International Lower Limb Collaborative (INTELLECT) study: a multicentre, international retrospective audit of lower extremity open fractures

    Get PDF

    Behavioural Risk Factors in Mid-Life Associated with Successful Ageing, Disability, Dementia and Frailty in Later Life: A Rapid Systematic Review.

    Get PDF
    BACKGROUND: Smoking, alcohol consumption, poor diet and low levels of physical activity significantly contribute to the burden of illness in developed countries. Whilst the links between specific and multiple risk behaviours and individual chronic conditions are well documented, the impact of these behaviours in mid-life across a range of later life outcomes has yet to be comprehensively assessed. This review aimed to provide an overview of behavioural risk factors in mid-life that are associated with successful ageing and the primary prevention or delay of disability, dementia, frailty and non-communicable chronic conditions. METHODS: A literature search was conducted to identify cohort studies published in English since 2000 up to Dec 2014. Multivariate analyses and a minimum follow-up of five years were required for inclusion. Two reviewers screened titles, abstracts and papers independently. Studies were assessed for quality. Evidence was synthesised by mid-life behavioural risk for a range of late life outcomes. FINDINGS: This search located 10,338 individual references, of which 164 are included in this review. Follow-up data ranged from five years to 36 years. Outcomes include dementia, frailty, disability and cardiovascular disease. There is consistent evidence of beneficial associations between mid-life physical activity, healthy ageing and disease outcomes. Across all populations studied there is consistent evidence that mid-life smoking has a detrimental effect on health. Evidence specific to alcohol consumption was mixed. Limited, but supportive, evidence was available relating specifically to mid-life diet, leisure and social activities or health inequalities. CONCLUSIONS: There is consistent evidence of associations between mid-life behaviours and a range of late life outcomes. The promotion of physical activity, healthy diet and smoking cessation in all mid-life populations should be encouraged for successful ageing and the prevention of disability and chronic disease.This work was funded by the National Institute for Health and Care Excellence (NICE), invitation to tender reference DDER 42013, and supported by the National Institute for Health Research School for Public Health Research. The scope of the work was defined by NICE and the protocol was agreed with NICE prior to the start of work. The funders had no role in data analysis, preparation of the manuscript or decision to publish.This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pone.014440

    The 4D nucleome project

    Get PDF
    corecore