1,259 research outputs found

    Mitonuclear Interactions Produce Diverging Responses to Mild Stress in Drosophila Larvae

    Get PDF
    Mitochondrial function depends on direct interactions between respiratory proteins encoded by genes in two genomes, mitochondrial and nuclear, which evolve in very different ways. Serious incompatibilities between these genomes can have severe effects on development, fitness and viability. The effect of subtle mitonuclear mismatches has received less attention, especially when subject to mild physiological stress. Here, we investigate how two distinct physiological stresses, metabolic stress (high-protein diet) and redox stress [the glutathione precursor N-acetyl cysteine (NAC)], affect development time, egg-to-adult viability, and the mitochondrial physiology of Drosophila larvae with an isogenic nuclear background set against three mitochondrial DNA (mtDNA) haplotypes: one coevolved (WT) and two slightly mismatched (COX and BAR). Larvae fed the high-protein diet developed faster and had greater viability in all haplotypes. The opposite was true of NAC-fed flies, especially those with the COX haplotype. Unexpectedly, the slightly mismatched BAR larvae developed fastest and were the most viable on both treatments, as well as control diets. These changes in larval development were linked to a shift to complex I-driven mitochondrial respiration in all haplotypes on the high-protein diet. In contrast, NAC increased respiration in COX larvae but drove a shift toward oxidation of proline and succinate. The flux of reactive oxygen species was increased in COX larvae treated with NAC and was associated with an increase in mtDNA copy number. Our results support the notion that subtle mitonuclear mismatches can lead to diverging responses to mild physiological stress, undermining fitness in some cases, but surprisingly improving outcomes in other ostensibly mismatched fly lines

    The Diabolo photometer and the future of ground-based millimetric bolometer devices

    Full text link
    The millimetric atmospheric windows at 1 and 2 mm are interesting targets for cosmological studies. Two broad areas appear leading this field: 1) the search for high redshift star-forming galaxies and 2) the measurement of Sunyaev-Zel'dovich (SZ) effect in clusters of galaxies at all redshifts. The Diabolo photometer is a dual-channel photometer working at 1.2 and 2.1 mm and dedicated to high angular resolution measurements of the Sunyaev--Zel'dovich effect towards distant clusters. It uses 2 by 3 bolometers cooled down to 0.1 K with a compact open dilution cryostat. The high resolution is provided by the IRAM 30 m telescope. The result of several Winter campaigns are reported here, including the first millimetric map of the SZ effect that was obtained by Pointecouteau et al. (2001) on RXJ1347-1145, the non-detection of a millimetric counterpart to the radio decrement towards PC1643+4631 and 2 mm number count upper limits. We discuss limitations in ground-based single-dish millimetre observations, namely sky noise and the number of detectors. We advocate the use of fully sampled arrays of (100 to 1000) bolometers as a big step forward in the millimetre continuum science. Efforts in France are briefly mentionned.Comment: 7 pages, 6 figures, to appear in the Proceedings of the 2K1BC ``Experimental Astronomy at millimeter wavelengths'', Breuil-Cervinia (AO) Italy - July 9 - 13, 2001, Eds. M. De Petris et a

    Mother's curse is pervasive across a large mitonuclear Drosophila panel

    Get PDF
    The maternal inheritance of mitochondrial genomes entails a sex-specific selective sieve, whereby mutations in mitochondrial DNA can only respond to selection acting on females. In theory, this enables male-harming mutations to accumulate in mitochondrial genomes as long as they are neutral, beneficial, or only slightly deleterious to females. Ultimately, this bias could drive the evolution of male-specific mitochondrial mutation loads, an idea known as mother’s curse. Earlier work on this hypothesis has mainly used small Drosophila panels, in which naturally sourced mitochondrial genomes were coupled to an isogenic nuclear background. The lack of nuclear genetic variation in these designs has precluded robust generalization. Here, we test the predictions of mother’s curse using a large Drosophila mitonuclear genetic panel, comprising nine isogenic nuclear genomes coupled to nine mitochondrial haplotypes, giving a total of 81 different mitonuclear genotypes. Following a predictive framework, we tested the mother’s curse hypothesis by screening our panel for wing size. This trait is tightly correlated with overall body size and is sexually dimorphic in Drosophila. Moreover, growth is heavily reliant on metabolism and mitochondrial function, making wing size an ideal trait for the study of the impact of mitochondrial variation. We detect high levels of mitonuclear epistasis, and more importantly, we report that mitochondrial genetic variance is larger in male than female Drosophila for eight out of the nine nuclear genetic backgrounds used. These results demonstrate that the maternal inheritance of mitochondrial DNA does indeed modulate male life history traits in a more generalisable way than previously demonstrated

    High temporal variability in the occurrence of consumer-resource interactions in ecological networks

    Full text link
    Ecological networks are theoretical abstractions that represent ecological communities. These networks are usually defined as static entities, in which the occurrence of a particular interaction between species is considered fixed despite the intrinsic dynamics of ecological systems. However, empirical analysis of the temporal variation of trophic interactions is constrained by the lack of data with high spatial, temporal, and taxonomic resolution. Here, we evaluate the spatiotemporal variability of multiple consumer-resource interactions of large marine networks. The tropic interactions of all of the analyzed networks had low temporal persistence, which was well described by a common exponential decay in the rank-frequency relationship of consumer-resource interactions. This common pattern of low temporal persistence was evident despite the dissimilarities of environmental conditions among sites. Between-site rank correlations of frequency of occurrence of interactions ranged from 0.59 to 0.73. After removing the interactions with <50% frequency, the between-site correlations decreased to values between 0.60 and 0.28, indicating that low-frequency interactions accounted for the apparent similarities between sites. Our results showed that the communities studied were characterized by few persistent interactions and a large number of transient trophic interactions. We suggest that consumer-resource temporal asynchrony in addition to varying local environmental conditions and opportunistic foraging could be among the mechanisms generating the observed rank-frequency relationship of trophic interactions. Therefore, our results question the analysis of ecological communities as static and persistent natural entities and stress the need for strengthening the analysis of temporal variability in ecological networks and long-term studies.Comment: 21 pages, 3 figure

    Charting the New Frontier of the Cosmic Microwave Background Polarization

    Full text link
    The anisotropies of the cosmic microwave background are a gold mine for cosmology and fundamental physics. ESA's Planck satellite should soon extract all information from the temperature vein but will be limited concerning the measurement of the degree of polarization of the anisotropies. This polarization information allows new independent tests of the standard cosmological paradigm, improves knowledge of cosmological parameters and last but not least is the best window available for constraining the physics of the very early universe, particularly the expected background of primordial gravitational waves. But exploiting this vein will be a challenge, since the sensitivity required is {\em at least} 10 times better than what Planck might achieve at best, with the necessary matching level of control of all systematics effects, both instrumental and astrophysical (foregrounds). We here recall the cosmological context and the case for CMB polarization studies. We also briefly introduce the SAMPAN project, a design study at CNES that aims at detecting the primoridal gravitational wave background for a tensor to scalar ratio T/S as small as 0.001.Comment: 4 pages, to appear in SF2A 2005 proceeding

    CHC22 and CHC17 clathrins have distinct biochemical properties and display differential regulation and function

    Get PDF
    Clathrins are cytoplasmic proteins that play essential roles in endocytosis and other membrane traffic pathways. Upon recruitment to intracellular membranes, the canonical clathrin triskelion assembles into a polyhedral protein coat that facilitates vesicle formation and captures cargo molecules for transport. The triskelion is formed by trimerization of three clathrin heavy-chain subunits. Most vertebrates have two isoforms of clathrin heavy chains, CHC17 and CHC22, generating two clathrins with distinct cellular functions. CHC17 forms vesicles at the plasma membrane for receptor-mediated endocytosis and at the trans-Golgi network for organelle biogenesis. CHC22 plays a key role in intracellular targeting of the insulin-regulated glucose transporter 4 (GLUT4), accumulates at the site of GLUT4 sequestration during insulin resistance, and has also been implicated in neuronal development. Here, we demonstrate that CHC22 and CHC17 share morphological features, in that CHC22 forms a triskelion and latticed vesicle coats. However, cellular CHC22-coated vesicles were distinct from those formed by CHC17. The CHC22 coat was more stable to pH change and was not removed by the enzyme complex that disassembles the CHC17 coat. Moreover, the two clathrins were differentially recruited to membranes by adaptors, and CHC22 did not support vesicle formation or transferrin endocytosis at the plasma membrane in the presence or absence of CHC17. Our findings provide biochemical evidence for separate regulation and distinct functional niches for CHC17 and CHC22 in human cells. Furthermore, the greater stability of the CHC22 coat relative to the CHC17 coat may be relevant to its excessive accumulation with GLUT4 during insulin resistance. [Abstract copyright: Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

    Observations of 'wisps' in magnetohydrodynamic simulations of the Crab Nebula

    Get PDF
    In this paper, we describe results of new high-resolution axisymmetric relativistic magnetohydrodynamic (MHD) simulations of pulsar wind nebulae. The simulations reveal strong breakdown of the equatorial symmetry and highly variable structure of the pulsar wind-termination shock. The synthetic synchrotron maps, constructed using a new more accurate approach, show striking similarity with the well-known images of the Crab Nebula obtained by Chandra and the Hubble Space Telescope. In addition to the jet–torus structure, these maps reproduce the Crab's famous moving wisps whose speed and rate of production agree with the observations. The variability is then analysed using various statistical methods, including the method of structure function and wavelet transform. The results point towards the quasi-periodic behaviour with the periods of 1.5–3 years and MHD turbulence on scales below 1 year. The full account of this study will be presented in a follow-up paper
    • 

    corecore