392 research outputs found

    Chandra observations of SN 1987A: the soft X-ray light curve revisited

    Get PDF
    We report on the present stage of SN 1987A as observed by the Chandra X-ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by ~6 x 10 ^-13 erg s^-1 cm^-2 per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.Comment: Accepted for publication by ApJ, 7 pages, 5 figure

    Global X-ray properties of the O and B stars in Carina

    Get PDF
    The key empirical property of the X-ray emission from O stars is a strong correlation between the bolometric and X-ray luminosities. In the framework of the Chandra Carina Complex Project, 129 O and B stars have been detected as X-ray sources; 78 of those, all with spectral type earlier than B3, have enough counts for at least a rough X-ray spectral characterization. This leads to an estimate of the Lx/Lbol ratio for an exceptional number of 60 O stars belonging to the same region and triples the number of Carina massive stars studied spectroscopically in X-rays. The derived log(Lx/Lbol) is -7.26 for single objects, with a dispersion of only 0.21dex. Using the properties of hot massive stars listed in the literature, we compare the X-ray luminosities of different types of objects. In the case of O stars, the Lx/Lbol ratios are similar for bright and faint objects, as well as for stars of different luminosity classes or spectral types. Binaries appear only slightly harder and slightly more luminous in X-rays than single objects; the differences are not formally significant (at the 1% level), except for the Lx/Lbol ratio in the medium (1.0--2.5keV) energy band. Weak-wind objects have similar X-ray luminosities but they display slightly softer spectra compared to "normal" O stars with the same bolometric luminosity. Discarding three overluminous objects, we find a very shallow trend of harder emission in brighter objects. The properties of the few B stars bright enough to yield some spectral information appear to be different overall (constant X-ray luminosities, harder spectra), hinting that another mechanism for producing X-rays, besides wind shocks, might be at work. However, it must be stressed that the earliest and X-ray brightest amongst these few detected objects are similar to the latest O stars, suggesting a possibly smooth transition between the two processes.Comment: 30 pages, 9 figures. Accepted for the ApJS Special Issue on the Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011. All 16 CCCP Special Issue papers are available at http://cochise.astro.psu.edu/Carina_public/special_issue.html through 2011 at leas

    Stellar X-ray sources in the Chandra COSMOS survey

    Full text link
    We present an analysis of the X-ray properties of a sample of solar- and late-type field stars identified in the Chandra Cosmic Evolution Survey (COSMOS), a deep (160ks) and wide (0.9 deg2) extragalactic survey. The sample of 60 sources was identified using both morphological and photometric star/galaxy separation methods. We determine X-ray count rates, extract spectra and light curves and perform spectral fits to determine fluxes and plasma temperatures. Complementary optical and near-IR photometry is also presented and combined with spectroscopy for 48 of the sources to determine spectral types and distances for the sample. We find distances ranging from 30pc to ~12kpc, including a number of the most distant and highly active stellar X-ray sources ever detected. This stellar sample extends the known coverage of the L_X-distance plane to greater distances and higher luminosities, but we do not detect as many intrinsically faint X-ray sources compared to previous surveys. Overall the sample is typically more luminous than the active Sun, representing the high-luminosity end of the disk and halo X-ray luminosity functions. The halo population appears to include both low-activity spectrally hard sources that may be emitting through thermal bremsstrahlung, as well as a number of highly active sources in close binaries.Comment: 13 pages, 5 figures, accepted for publication in Ap

    HIF-1 alpha-independent hypoxia-induced rapid PTK6 stabilization is associated with increased motility and invasion

    Get PDF
    © 2014 Landes Bioscience. PTK6/Brk is a non-receptor tyrosine kinase overexpressed in cancer. Here we demonstrate that cytosolic PTK6 is rapidly and robustly induced in response to hypoxic conditions in a HIF-1-independent manner. Furthermore, a proportion of hypoxic PTK6 subsequently re-localized to the cell membrane. We observed that the rapid stabilization of PTK6 is associated with a decrease in PTK6 ubiquitylation and we have identified c-Cbl as a putative PTK6 E3 ligase in normoxia. The consequences of hypoxia-induced PTK6 stabilization and subcellular re-localization to the plasma membrane include increased cell motility and invasion, suggesting PTK6 targeting as a therapeutic approach to reduce hypoxia-regulated metastatic potential. This could have particular significance for breast cancer patients with triple negative disease

    Chandra Study of the Cepheus B Star Forming Region: Stellar Populations and the Initial Mass Function

    Full text link
    Cepheus B (Cep B) molecular cloud and a portion of the nearby Cep OB3b OB association, one of the most active regions of star formation within 1 kpc, has been observed with the ACIS detector on board the Chandra X-ray Observatory. We detect 431 X-ray sources, of which 89% are confidently identified as clustered pre-main sequence stars. Two main results are obtained. First, we provide the best census to date for the stellar population of the region. We identify many members of two rich stellar clusters: the lightly obscured Cep OB3b association, and the deeply embedded cluster in Cep B whose existence was previously traced only by a handful of radio sources and T Tauri stars. Second, we find a discrepancy between the X-ray Luminosity Functions of the Cep OB3b and the Orion Nebula Cluster. This may be due to different Initial Mass Functions of two regions (excess of ~0.3 solar mass stars), or different age distributions. Several other results are obtained. A diffuse X-ray component seen in the field is attributed to the integrated emission of unresolved low mass PMS stars. The X-ray emission from HD 217086 (O7n), the principle ionizing source of the region, follows the standard model involving many small shocks in an unmagnetized radiatively accelerated wind. The X-ray source #294 joins a number of similar superflare PMS stars where long magnetic structures may connect the protoplanetary disk to the stellar surface.Comment: 72 pages, 31 figures, 8 tables. Accepted for publication in Ap

    The Spectra and Variability of X-ray Sources in a Deep Chandra Observation of the Galactic Center

    Full text link
    We examine the X-ray spectra and variability of the sample of X-ray sources with L_X = 10^{31}-10^{33} erg s^{-1} identified within the inner 9' of the Galaxy. Very few of the sources exhibit intra-day or inter-month variations. We find that the spectra of the point sources near the Galactic center are very hard between 2--8 keV, even after accounting for absorption. When modeled as power laws the median photon index is Gamma=0.7, while when modeled as thermal plasma we can only obtain lower limits to the temperature of kT>8 keV. The combined spectra of the point sources is similarly hard, with a photon index of Gamma=0.8. Strong line emission is observed from low-ionization, He-like, and H-like Fe, both in the average spectra and in the brightest individual sources. The line ratios of the highly-ionized Fe in the average spectra are consistent with emission from a plasma in thermal equilibrium. This line emission is observed whether average spectra are examined as a function of the count rate from the source, or as a function of the hardness ratios of individual sources. This suggests that the hardness of the spectra may in fact to due local absorption that partially-covers the X-ray emitting regions in the Galactic center systems. We suggest that most of these sources are intermediate polars, which (1) often exhibit hard spectra with prominent Fe lines, (2) rarely exhibit either flares on short time scales or changes in their mean X-ray flux on long time scales, and (3) are the most numerous hard X-ray sources with comparable luminosities in the Galaxy.Comment: 27 pages, including 13 figures. To appear in ApJ, 1 October 2004, v613 issue. An electronic version of table 2 is on http://astro.ucla.edu/~mmuno/sgra/table2_electronic.txt and reduced data files for each source are available on http://www.astro.psu.edu/users/niel/galcen-xray-data/galcen-xray-data.htm

    X-ray Sources in the Hubble Deep Field Detected by Chandra

    Full text link
    We present first results from an X-ray study of the Hubble Deep Field North (HDF-N) and its environs obtained using 166 ks of data collected by the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-ray Observatory. This is the deepest X-ray observation ever reported, and in the HDF-N itself we detect six X-ray sources down to a 0.5--8 keV flux limit of 4E-16 erg cm^-2 s^-1. Comparing these sources with objects seen in multiwavelength HDF-N studies shows positional coincidences with the extremely red object NICMOS J123651.74 +621221.4, an active galactic nucleus (AGN), three elliptical galaxies, and one nearby spiral galaxy. The X-ray emission from the ellipticals is consistent with that expected from a hot interstellar medium, and the spiral galaxy emission may arise from a `super-Eddington' X-ray binary or ultraluminous supernova remnant. Four of the X-ray sources have been detected at radio wavelengths. We also place X-ray upper limits on AGN candidates found in the HDF-N, and we present the tightest constraints yet on X-ray emission from the SCUBA submillimeter source population. None of the 10 high-significance submillimeter sources reported in the HDF-N and its vicinity is detected with Chandra ACIS. These sources appear to be dominated by star formation or have AGN with Compton-thick tori and little circumnuclear X-ray scattering.Comment: 11 pages, ApJ, in press, also available from http://www.astro.psu.edu/users/niel/hdf/hdf-chandra.htm

    The Massive Star Forming Region Cygnus OB2. I. Chandra catalogue of association members

    Get PDF
    We present a catalogue of 1696 X-ray sources detected in the massive star forming region (SFR) Cygnus OB2 and extracted from two archival Chandra observations of the center of the region. A deep source extraction routine, exploiting the low background rates of Chandra observations was employed to maximize the number of sources extracted. Observations at other wavelengths were used to identify low count-rate sources and remove likely spurious sources. Monte Carlo simulations were also used to assess the authenticity of these sources. We used a Bayesian technique to identify optical or near-IR counterparts for 1501 (89%) of our sources, using deep observations from the INT Photometric H-alpha Survey, the Two Micron All Sky Survey, and the UKIRT Infrared Deep Sky Survey-Galactic plane Survey. 755 (45%) of these objects have six-band r', H-alpha, i', J, H, and K optical and near-IR photometry. From an analysis of the Poisson false-source probabilities for each source we estimate that our X-ray catalogue includes < 1% of false sources, and an even lower fraction when only sources with optical or near-IR associations are considered. A Monte Carlo simulation of the Bayesian matching scheme allows this method to be compared to more simplified matching techniques and enables the various sources of error to be quantified. The catalogue of 1696 objects presented here includes X-ray broad band fluxes, model fits, and optical and near-IR photometry in what is one of the largest X-ray catalogue of a single SFR to date. The high number of stellar X-ray sources detected from relatively shallow observations confirms the status and importance of Cygnus OB2 as one of our Galaxy's most massive SFRs.Comment: Accepted for publication in ApJS. 39 pages, 5 figures, 5 tables (full tables available in the published version or on request to the author
    corecore