9 research outputs found

    Epidemiologic Relationship between Toscana Virus Infection and Leishmania infantum Due to Common Exposure to Phlebotomus perniciosus Sandfly Vector

    Get PDF
    Sand flies are recognised vectors of parasites in the genus Leishmania and a number of arthropod-borne viruses, in particular viruses within the genus Phlebovirus, family Bunyaviridae. In southern France, Toscana phlebovirus (TOSV) is recognized as a prominent cause of summer meningitis. Since Leishmania and TOSV have a common vector (Phlebotomus perniciosus), an epidemiologic link has been assumed for a long time. However, there is no scientific evidence of such a link between human leishmaniosis and phleboviral infections. To identify a possible link, we investigated the presence and distribution of antibodies against these two microorganisms (i) in individuals and (ii) at a spatial level in the city of Marseille (south-eastern France). Five hundred sera were selected randomly in the biobank of the Department of Parasitology of the Public Hospitals of Marseille. All sera were previously tested for IgG against Leishmania by Western Blotting, and TOSV IgG were detected by indirect immunofluorescence. The seropositivity rates were 21.4% for TOSV and 28% for Leishmania. Statistical analysis demonstrated that seropositivity for one pathogen was significantly associated with seropositivity to the other pathogen. This result provided the first robust evidence for the existence of an epidemiological relationship between Leishmania infantum and TOSV. Addresses of tested patients were geolocalized and integrated into Geographical Information System software, in order to test spatial relationship between the two pathogens. Spatial analysis did not allow to identify (i) specific patterns for the spatial distribution of positive serological results for TOSV or Leishmania, and (ii) a spatial relationship between Leishmania and TOSV positive serological results. This may reflect the fact that the sample studied was not powerful enough to demonstrate either a spatial clustering or co-location, i.e. that the actual risk exposure area is smaller than the mean of distance between patients in our study (245 m)

    Rift Valley fever virus NSs protein functions and the similarity to other bunyavirus NSs proteins

    Get PDF

    LoPPS : A long PCR product sequencing method for rapid characterisation of long amplicons

    No full text
    Here, we propose an optimised protocol (LoPPS, long PCR product sequencing) which allows the fast, cost-attractive, and high-throughput sequencing of long PCR products. LoPPS constitutes an alternative to the primer-walking technology which is expensive and time consuming but remains the current standard procedure. It is based on the ultrasonic shearing, polishing, and cloning of PCR or RT-PCR products and is compatible with 96- or 384-well microplate systems in which bacterial growth, preparation of plasmid DNA, and sequencing can be automated. We present results obtained from 24 different RT-PCR products (2.5-4.8 kbp long) obtained from various RNA viruses and fully sequenced using LoPPS. The method proved to be robust and fast. It was successfully used on a low amount of DNA and allowed each target nucleotide position to be controlled twice or more, with a final cost which is one-third of that of primer-walking

    Long PCR product sequencing (LoPPS) : a shotgun-based approach to sequence long PCR products

    No full text
    Here we describe a practical procedure for sequencing long PCR products. The method relies on ultrasonic shearing of PCR products, resulting in fragments 700 - 1,000 nt long. Termini are subsequently repaired to obtain blunt ends and 3' A-overhangs are added before TA cloning. A predetermined number of clones are sequenced using an insert-independent primer to obtain an overlapping contig covering the full length of the PCR product. This method is cost effective and enables the complete sequencing of any large PCR product in a high-throughput format. Processing of amplified DNA requires 3 h handling time prior to the ligation step, and the clone library is available 2 d later. The complete sequence information is obtained approximately 5 d after the PCR step, depending on the sequencing procedure adopted

    SARS-CoV-2 neutralising antibody testing in Europe: towards harmonisation of neutralising antibody titres for better use of convalescent plasma and comparability of trial data.

    No full text
    We compared the performance of SARS-CoV-2 neutralising antibody testing between 12 European laboratories involved in convalescent plasma trials. Raw titres differed almost 100-fold differences between laboratories when blind-testing 15 plasma samples. Calibration of titres in relation to the reference reagent and standard curve obtained by testing a dilution series reduced the inter-laboratory variability ca 10-fold. The harmonisation of neutralising antibody quantification is a vital step towards determining the protective and therapeutic levels of neutralising&nbsp;antibodies.</p

    Microbial Ecology of the Dark Ocean above, at, and below the Seafloor†

    No full text
    Summary: The majority of life on Earth—notably, microbial life—occurs in places that do not receive sunlight, with the habitats of the oceans being the largest of these reservoirs. Sunlight penetrates only a few tens to hundreds of meters into the ocean, resulting in large-scale microbial ecosystems that function in the dark. Our knowledge of microbial processes in the dark ocean—the aphotic pelagic ocean, sediments, oceanic crust, hydrothermal vents, etc.—has increased substantially in recent decades. Studies that try to decipher the activity of microorganisms in the dark ocean, where we cannot easily observe them, are yielding paradigm-shifting discoveries that are fundamentally changing our understanding of the role of the dark ocean in the global Earth system and its biogeochemical cycles. New generations of researchers and experimental tools have emerged, in the last decade in particular, owing to dedicated research programs to explore the dark ocean biosphere. This review focuses on our current understanding of microbiology in the dark ocean, outlining salient features of various habitats and discussing known and still unexplored types of microbial metabolism and their consequences in global biogeochemical cycling. We also focus on patterns of microbial diversity in the dark ocean and on processes and communities that are characteristic of the different habitats
    corecore