1,945 research outputs found

    Low energy measurement of the 7Be(p,gamma)8B cross section

    Full text link
    We have measured the cross section of the 7Be(p,gamma)8B reaction for E_cm = 185.8 keV, 134.7 keV and 111.7 keV using a radioactive 7Be target (132 mCi). Single and coincidence spectra of beta^+ and alpha particles from 8B and 8Be^* decay, respectively, were measured using a large acceptance spectrometer. The zero energy S factor inferred from these data is 18.5 +/- 2.4 eV b and a weighted mean value of 18.8 +/- 1.7 eV b (theoretical uncertainty included) is deduced when combining this value with our previous results at higher energies.Comment: Accepted for publication in Phys. Rev. Let

    The European Union's Role in International Economic Fora : The G20

    Get PDF

    The European Union's Role in International Economic Fora : The G20

    Get PDF

    Means and covariance functions for geostatistical compositional data: an axiomatic approach

    Full text link
    This work focuses on the characterization of the central tendency of a sample of compositional data. It provides new results about theoretical properties of means and covariance functions for compositional data, with an axiomatic perspective. Original results that shed new light on the geostatistical modeling of compositional data are presented. As a first result, it is shown that the weighted arithmetic mean is the only central tendency characteristic satisfying a small set of axioms, namely continuity, reflexivity and marginal stability. Moreover, this set of axioms also implies that the weights must be identical for all parts of the composition. This result has deep consequences on the spatial multivariate covariance modeling of compositional data. In a geostatistical setting, it is shown as a second result that the proportional model of covariance functions (i.e., the product of a covariance matrix and a single correlation function) is the only model that provides identical kriging weights for all components of the compositional data. As a consequence of these two results, the proportional model of covariance function is the only covariance model compatible with reflexivity and marginal stability

    Construction and implementation of asymptotic expansions for Jacobi-type orthogonal polynomials

    Get PDF
    We are interested in the asymptotic behavior of orthogonal polynomials of the generalized Jacobi type as their degree n goes to ∞. These are defined on the interval [−1, 1] with weight function: w(x)=(1−x)α(1+x)βh(x),α,β>−1 and h(x) a real, analytic and strictly positive function on [−1, 1]. This information is available in the work of Kuijlaars et al. (Adv. Math. 188, 337–398 2004), where the authors use the Riemann–Hilbert formulation and the Deift–Zhou non-linear steepest descent method. We show that computing higher-order terms can be simplified, leading to their efficient construction. The resulting asymptotic expansions in every region of the complex plane are implemented both symbolically and numerically, and the code is made publicly available. The main advantage of these expansions is that they lead to increasing accuracy for increasing degree of the polynomials, at a computational cost that is actually independent of the degree. In contrast, the typical use of the recurrence relation for orthogonal polynomials in computations leads to a cost that is at least linear in the degree. Furthermore, the expansions may be used to compute Gaussian quadrature rules in O(n) operations, rather than O(n2) based on the recurrence relation

    Solar Fusion Cross Sections

    Get PDF
    We review and analyze the available information for nuclear fusion cross sections that are most important for solar energy generation and solar neutrino production. We provide best values for the low-energy cross-section factors and, wherever possible, estimates of the uncertainties. We also describe the most important experiments and calculations that are required in order to improve our knowledge of solar fusion rates.Comment: LaTeX file, 48 pages (figures not included). To appear in Rev. Mod. Phys., 10/98. All authors now listed. Full postscript version with figures available at http://www.sns.ias.edu/~jnb/Papers/Preprints/nuclearfusion.htm

    Comparison of low--energy resonances in 15N(alpha,gamma)19F and 15O(alpha,gamma)19Ne and related uncertainties

    Full text link
    A disagreement between two determinations of Gamma_alpha of the astro- physically relevant level at E_x=4.378 MeV in 19F has been stated in two recent papers by Wilmes et al. and de Oliveira et al. In this work the uncertainties of both papers are discussed in detail, and we adopt the value Gamma_alpha=(1.5^{+1.5}_{-0.8})10^-9eV for the 4.378 MeV state. In addition, the validity and the uncertainties of the usual approximations for mirror nuclei Gamma_gamma(19F) approx Gamma_gamma(19Ne), theta^2_alpha(19F) approx theta^2_alpha(19Ne) are discussed, together with the resulting uncertainties on the resonance strengths in 19Ne and on the 15O(alpha,gamma)19Ne rate.Comment: 9 pages, Latex, To appear in Phys. Rev.
    corecore