15 research outputs found

    Numerical and experimental study of the contact resistance for high copper alloys in force domain 1–100 N

    No full text
    High copper alloys were required by the industry to improve mechanical and electrical contact resistance for connecting device. This work addresses the electrical contact resistance law versus force in the range (1–100 N) for sphere/plan shapes. The designed samples are submitted to indentation (static contact) and insertion (sliding contact). Experimental power law of contact resistance versus forces was obtained where the law parameters are well related to electrical resistivity, Young modulus, yield stress... Previous analytical relationship Rc=f(Fc) in the literature and finite element simulation code are used to discuss the origin and the validity of such practical power law. Nevertheless the analytic expression are found unsatisfactory, the numerical model gives some agreement with this previous experimental law. However better convergence between numerical and experimental data was obtained in indentation when the surface topography is considered. The obtained results are a useful tool to evolve compromise between the electrical and mechanical aspects for a high loading contact. The main statement is that numerical model including the real topography and roughness is robust so it can be used in different contact shape and complex design for contact resistance evaluation. Finally, depending on the hardness and the resistivity, these uncoated materials were found to act on fretting apparitions and its level.

    Study of electric arc parameters during the extraction phase for automotive connectors

    No full text
    International audienceComfort, safety, communication, control with assistance (antilock brake system, seat heating, multimedia, etc.), and safeguarding the environment are many factors that are included in the new generation of vehicles. The increase in the number of electronic and electric systems leads to a high level of vehicle control. To answer this high electric power demand, it will be necessary to triple the voltage of the batteries (from 14 to 42 V). The objective of this work is to study the arc phenomenon that can occur in an accidental way during the use of a high electric power and particularly during the extraction phase of the male part from the female part of the automotive connector. It was observed that this can be characterized by both its energy and its temperature. The amplification of the contact current from 14 to 42 V d.c. considerably increases arc damage

    2D and 3D Non-planar Dynamic Rupture by a Finite Volume Method

    No full text
    Understanding the physics of the rupture process requires very sophisticated and accurate tools in which both the geometry of the fault surface and realistic frictional behaviours could interact during rupture propagation. New formulations have been recently proposed for modelling the dynamic shear rupture of non-planar faults (Ando et al., 2004; Cruz-Atienza &Virieux, 2004; Huang &Costanzo, 2004) providing highly accurate field estimates nearby the crack edges at the expanse of a simple medium description or high computational cost. We propose a new method based on the finite volume formulation to model the dynamic rupture propagation of non-planar faults. After proper transformations of the velocity-stress elastodynamic system of partial differential equations following an explicit conservative law, we construct an unstructured time-domain numerical formulation of the crack problem. As a result, arbitrary non-planar faults can be explicitly represented without extra computational cost. The analysis of the total discrete energy through the fault surface leads us to the specification of dynamic rupture boundary conditions which insure the correct discrete energy time variation and, therefore, the system stability. These boundary conditions are set on stress fluxes and not on stress values, which makes the fracture to have no thickness. Different shapes of cracks are analysed. We present an example of a bidimensional non-planar spontaneous fault growth in heterogeneous media as well as preliminary results of a highly efficient extension to the three dimensional rupture model based on the standard MPI

    Statistical Analysis of Voltage from Constriction to Micro-arc Values during Aging by Fretting

    No full text
    International audienc

    Dynamic non-planar crack rupture by a finite volume method

    No full text
    International audienceModelling dynamic rupture for complex geometrical fault structures is performed through a finite volume method. After transformations for building up the partial differential system following explicit conservative law, we design an unstructured bi-dimensional time-domain numerical formulation of the crack problem. As a result, arbitrary non-planar faults can be explicitly represented without extra computational cost. On these complex surfaces, boundary conditions are set on stress fluxes and not on stress values. Prescribed rupture velocity gives accurate solutions with respect to analytical ones depending on the mesh refinement, while solutions for spontaneous propagation are analysed through numerical means. An example of non-planar spontaneous fault growth in heterogeneous media demonstrates the good behaviour of the proposed algorithm as well as specific difficulties of such numerical modelling

    An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling

    No full text
    International audienceWe present a discontinuous Galerkin finite-element method (DG-FEM) formulation with Convolutional Perfectly Matched Layer (CPML) absorbing boundary condition for 3-D elastic seismic wave modelling. This method makes use of unstructured tetrahedral meshes locally refined according to the medium properties (h-adaptivity), and of approximation orders that can change from one element to another according to an adequate criterion (p-adaptivity). These two features allow us to significantly reduce the computational cost of the simulations. Moreover, we have designed an efficient CPML absorbing boundary condition, both in terms of absorption and computational cost, by combining approximation orders in the numerical domain. A quadratic interpolation is typically used in the medium to obtain the required accuracy, while lower approximation orders are used in the CPMLs to reduce the total computational cost and to obtain a well-balanced workload over the processors. While the efficiency of DG-FEMs have been largely demonstrated for high approximation orders, we favour the use of low approximation orders as they are more appropriate to the applications we are interested in. In particular, we address the issues of seismic modelling and seismic imaging in cases of complex geological structures that require a fine discretization of the medium. We illustrate the efficiency of our approach within the framework of the EUROSEISTEST verification and validation project, which is designed to compare high-frequency (up to 4 Hz) numerical predictions of ground motion in the Volvi basin (Greece). Through the tetrahedral meshing, we have achieved fine discretization of the basin, which appears to be a sine qua non condition for accurate computation of surface waves diffracted at the basin edges. We compare our results with predictions computed with the spectral element method (SEM), and demonstrate that our method yields the same level of accuracy with computation times of the same order of magnitude
    corecore