4,026 research outputs found
Geometrical construction of quantum groups representations
We describe geometrically the classical and quantum inhomogeneous groups
G_0=(SL(2, \BbbC)\triangleright \BbbC^2) and G_1=(SL(2, \BbbC)\triangleright
\BbbC^2)\triangleright \BbbC by studying explicitly their shape algebras as a
spaces of polynomial functions with a quadratic relations.Comment: 16 pages, 1 figur
Simulation of Hydrogen Generation from Methane Partial Oxidation in a Plasma Fuel Reformer
A model for the chemistry in a plasma fuel reformer or plasmatron has been developed. The plasma fuel reformer is set up to produce syngas (hydrogen and carbon monoxide gas mixture) from partial oxidation of hydrocarbons. The behavior of methane as fuel has been investigated to characterize and simulate the plasmatron performance. The goal of this work has been improved understanding of the physical/chemical processes within the reactor. The simulation tool used was CHEMKIN 3.7, using the GRI methane combustion mechanism. The Partially Stirred Reactor application (PASR) simulates random mixing by a frequency mixing parameter, which is directly dependant of the system fluid dynamic properties. The fuel reformer was designed as a reactor where combustion is initiated by an electric discharge due to ohmic heating of the arc region. From discharge observations, energy estimations and model simulations, it was found that the electric arc initiates combustion by locally raising the temperature and then propagating the reaction by heat and mass transfer/mixing to the surroundings. Simulation results demonstrated that there is an optimum characteristic mixing time for each residence time, depending on the initial temperature reached at the arc. It was also found that for given power input into the system, the more spread the energy is, or the more mass is heated to a moderate temperature, the better the calculated performance
Grains charges in interstellar clouds
The charge of cosmic grains could play an important role in many astrophysical phenomena. It probably has an influence on the coagulation of grains and more generally on grain-grain collisions, and on interaction between charged particles and grains which could lead to the formation of large grains or large molecules. The electrostatic charge of grains depends mainly on the nature of constitutive material of the grain and on the physical properties of its environment: it results from a delicate balance between the plasma particle collection and the photoelectron emission, both of them depending on each other. The charge of the grain is obtained in two steps: (1) using the numerical model the characteristics of the environment of the grain are computed; (2) the charge of a grain which is embedded in this environment is determined. The profile of the equilibrium charge of some typical grains through different types of interstellar clouds is obtained as a function of the depth of the cloud. It is shown that the grain charge can reach high values not only in hot diffuse clouds, but also in clouds with higher densities. The results are very sensitive to the mean UV interstellar radiation field. Three parameters appear to be essential but with different levels of sensitivity of the charge: the gas density, the temperature, and the total thickness of the cloud
Ergodic and Nonergodic Anomalous Diffusion in Coupled Stochastic Processes
Inspired by problems in biochemical kinetics, we study statistical properties
of an overdamped Langevin process whose friction coefficient depends on the
state of a similar, unobserved process. Integrating out the latter, we derive
the long time behaviour of the mean square displacement. Anomalous diffusion is
found. Since the diffusion exponent can not be predicted using a simple scaling
argument, anomalous scaling appears as well. We also find that the coupling can
lead to ergodic or non-ergodic behaviour of the studied process. We compare our
theoretical predictions with numerical simulations and find an excellent
agreement. The findings caution against treating biochemical systems coupled
with unobserved dynamical degrees of freedom by means of standard, diffusive
Langevin descriptions
Numerical Simulations of Shock Wave-Driven Jets
We present the results of numerical simulations of shock wave-driven jets in
the solar atmosphere. The dependence of observable quantities like maximum
velocity and deceleration on parameters such as the period and amplitude of
initial disturbances and the inclination of the magnetic field is investigated.
Our simulations show excellent agreement with observations, and shed new light
on the correlation between velocity and deceleration and on the regional
differences found in observations.Comment: 7 pages, 11 figures, submitted to Ap
Electromagnetic duality in general relativity
By resolving the Riemann curvature relative to a unit timelike vector into
electric and magnetic parts, we consider duality relations analogous to the
electromagnetic theory. It turns out that the duality symmetry of the Einstein
action implies the Einstein vacuum equation without the cosmological term. The
vacuum equation is invariant under interchange of active and passive electric
parts giving rise to the same vacuum solutions but the gravitational constant
changes sign. Further by modifying the equation it is possible to construct
interesting dual solutions to vacuum as well as to flat spacetimes.Comment: 18 pages, LaTEX versio
Ambipolar Nernst effect in NbSe
The first study of Nernst effect in NbSe reveals a large quasi-particle
contribution with a magnitude comparable and a sign opposite to the vortex
signal. Comparing the effect of the Charge Density Wave(CDW) transition on Hall
and Nernst coefficients, we argue that this large Nernst signal originates from
the thermally-induced counterflow of electrons and holes and indicates a
drastic change in the electron scattering rate in the CDW state. The results
provide new input for the debate on the origin of the anomalous Nernst signal
in high-T cuprates.Comment: 5 pages including 4 figure
The Influence of Magnetic Field on Oscillations in the Solar Chromosphere
Two sequences of solar images obtained by the Transition Region and Coronal
Explorer in three UV passbands are studied using wavelet and Fourier analysis
and compared to the photospheric magnetic flux measured by the Michelson
Doppler Interferometer on the Solar Heliospheric Observatory to study wave
behaviour in differing magnetic environments. Wavelet periods show deviations
from the theoretical cutoff value and are interpreted in terms of inclined
fields. The variation of wave speeds indicates that a transition from dominant
fast-magnetoacoustic waves to slow modes is observed when moving from network
into plage and umbrae. This implies preferential transmission of slow modes
into the upper atmosphere, where they may lead to heating or be detected in
coronal loops and plumes.Comment: 8 pages, 6 figures (4 colour online only), accepted for publication
in The Astrophysical Journa
On the classification of type D spacetimes
We give a classification of the type D spacetimes based on the invariant
differential properties of the Weyl principal structure. Our classification is
established using tensorial invariants of the Weyl tensor and, consequently,
besides its intrinsic nature, it is valid for the whole set of the type D
metrics and it applies on both, vacuum and non-vacuum solutions. We consider
the Cotton-zero type D metrics and we study the classes that are compatible
with this condition. The subfamily of spacetimes with constant argument of the
Weyl eigenvalue is analyzed in more detail by offering a canonical expression
for the metric tensor and by giving a generalization of some results about the
non-existence of purely magnetic solutions. The usefulness of these results is
illustrated in characterizing and classifying a family of Einstein-Maxwell
solutions. Our approach permits us to give intrinsic and explicit conditions
that label every metric, obtaining in this way an operational algorithm to
detect them. In particular a characterization of the Reissner-Nordstr\"{o}m
metric is accomplished.Comment: 29 pages, 0 figure
- …
