365 research outputs found

    Evidence for a quantum phase transition in electron-doped Pr2−x_{2-x}Cex_{x}CuO4−δ_{4-\delta} from Thermopower measurements

    Full text link
    The evidence for a quantum phase transition under the superconducting dome in the high-TcT_c cuprates has been controversial. We report low temperature normal state thermopower(S) measurements in electron-doped Pr2−x_{2-x}Cex_{x}CuO4−δ_{4-\delta} as a function of doping (x from 0.11 to 0.19). We find that at 2K both S and S/T increase dramatically from x=0.11 to 0.16 and then saturate in the overdoped region. This behavior has a remarkable similarity to previous Hall effect results in Pr2−x_{2-x}Cex_{x}CuO4−δ_{4-\delta} . Our results are further evidence for an antiferromagnetic to paramagnetic quantum phase transition in electron-doped cuprates near x=0.16.Comment: 4 pages, 5 figure

    Nernst quantum oscillations in bulk semi-metals

    Full text link
    With a widely available magnetic field of 10 T, one can attain the quantum limit in bismuth and graphite. At zero magnetic field, these two elemental semi-metals host a dilute liquid of carriers of both signs. When the quantum limit is attained, all quasi-particles are confined to a few Landau tubes. Each time a Landau tube is squeezed before definitely leaving the Fermi surface, the Nernst response sharply peaks. In bismuth, additional Nernst peaks, unexpected in the non-interacting picture, are resolved beyond the quantum limit. The amplitude of these unexpected Nernst peaks is larger in the samples with the longest electron mean-free-path.Comment: Accepted for publication in Journal of Physics: Condensed Matter's special issue on Strongly Correlated Electron Systems(SCES

    The Nernst effect and the boundaries of the Fermi liquid picture

    Full text link
    Following the observation of an anomalous Nernst signal in cuprates, the Nernst effect was explored in a variety of metals and superconductors during the past few years. This paper reviews the results obtained during this exploration, focusing on the Nernst response of normal quasi-particles as opposed to the one generated by superconducting vortices or by short-lived Cooper pairs. Contrary to what has been often assumed, the so-called Sondheimer cancelation does not imply a negligible Nernst response in a Fermi liquid. In fact, the amplitude of the Nernst response measured in various metals in the low-temperature limit is scattered over six orders of magnitude. According to the data, this amplitude is roughly set by the ratio of electron mobility to Fermi energy in agreement with the implications of the semi-classical transport theory.Comment: Final version, Topical review for JPC

    Ambipolar Nernst effect in NbSe2_2

    Full text link
    The first study of Nernst effect in NbSe2_2 reveals a large quasi-particle contribution with a magnitude comparable and a sign opposite to the vortex signal. Comparing the effect of the Charge Density Wave(CDW) transition on Hall and Nernst coefficients, we argue that this large Nernst signal originates from the thermally-induced counterflow of electrons and holes and indicates a drastic change in the electron scattering rate in the CDW state. The results provide new input for the debate on the origin of the anomalous Nernst signal in high-Tc_c cuprates.Comment: 5 pages including 4 figure

    Low-temperature thermopower study of YbRh2Si2

    Full text link
    The heavy-fermion compound YbRh2Si2 exhibits an antiferromagnetic (AFM) phase transition at an extremely low temperature of TN = 70 mK. Upon applying a tiny magnetic field of Bc = 60 mT the AFM ordering is suppressed and the system is driven toward a field-induced quantum critical point (QCP). Here, we present low-temperature thermopower S(T) measurements of high-quality YbRh2Si2 single crystals down to 30 mK. S(T) is found negative with comparably large values in the paramagnetic state. In zero field no Landau-Fermi-liquid (LFL) like behavior is observed within the magnetically ordered phase. However, a sign change from negative to positive appears at lowest temperatures on the magnetic side of the QCP. For higher fields B > Bc a linear extrapolation of S to zero clearly evidences the recovery of LFL regime. The crossover temperature is sharply determined and coincides perfectly with the one derived from resistivity and specific heat investigations.Comment: LT25 conference proceedings in Journal of Physics: Conference Serie

    Magnetothermoelectric properties of Bi2Se3

    Get PDF
    We present a study of entropy transport in Bi2Se3 at low temperatures and high magnetic fields. In the zero-temperature limit, the magnitude of the Seebeck coefficient quantitatively tracks the Fermi temperature of the 3D Fermi surface at \Gamma-point as the carrier concentration changes by two orders of magnitude (1017^{17} to 1019^{19}cm−3^{-3}). In high magnetic fields, the Nernst response displays giant quantum oscillations indicating that this feature is not exclusive to compensated semi-metals. A comprehensive analysis of the Landau Level spectrum firmly establishes a large gg-factor in this material and a substantial decrease of the Fermi energy with increasing magnetic field across the quantum limit. Thus, the presence of bulk carriers significantly affects the spectrum of the intensively debated surface states in Bi2Se3 and related materials.Comment: 10 pages, 9 figure

    Universal features of Thermopower in High Tc systems and Quantum Criticality

    Full text link
    In high Tc superconductors a wide ranging connection between the doping dependence of the transition temperature Tc and the room temperature thermopower Q has been observed. A "universal correlation" between these two quantities exists with the thermopower vanishing at optimum doping as noted by OCTHH (Obertelli, Cooper, Tallon, Honma and Hor). In this work we provide an interpretation of this OCTHH universality in terms of a possible underlying quantum critical point (QCP) at Tc. Central to our viewpoint is the recently noted Kelvin formula relating the thermopower to the density derivative of the entropy. Perspective on this formula is gained through a model calculation of the various Kubo formulas in an exactly solved 1-dimensional model with various limiting procedures of wave vector and frequency.Comment: 12 pages, 8 figure

    Sub-Filter Scale Models for Scalar Transport in Large Eddy Simulations

    Get PDF
    Large eddy simulation (LES) of turbulent heat transfer in an in- nite channel has been used to compare the performance of several promising sub-lter-scale models for modelling the transport of a passive scalar. The dynamic mixed model and the dynamic reconstruction model (a higher order version of the mixed model) have been reported in the literature to perform very well in LES of turbulent ow. Here these models are tested to determine the model's suitability for modelling transport of a passive scalar. These models together with the dynamic Smagorinsky model and a no-model case, are tested at a Prandtl number of 0.71 and Reynolds number of 180 based on wall friction velocity and channel half width. Both the dynamic reconstruction model and the dynamic mixed model perform very well showing clear improvement in the prediction of the mean ow and other turbulent statistics compared to the no-model case. The standard dynamic Smagorinsky model without the additional reconstruction terms performs quite poorly

    Anomalous thermopower and Nernst effect in CeCoIn5\rm CeCoIn_5: entropy-current loss in precursor state

    Full text link
    The heavy-electron superconductor CeCoIn5_5 exhibits a puzzling precursor state above its superconducting critical temperature at TcT_c = 2.3 K. The thermopower and Nernst signal are anomalous. Below 15 K, the entropy current of the electrons undergoes a steep decrease reaching ∼\sim0 at TcT_c. Concurrently, the off-diagonal thermoelectric current αxy\alpha_{xy} is enhanced. The delicate sensitivity of the zero-entropy state to field implies phase coherence over large distances. The prominent anomalies in the thermoelectric current contrast with the relatively weak effects in the resistivity and magnetization.Comment: 5 figures, 4 page

    Nernst effect in semi-metals: the meritorious heaviness of electrons

    Full text link
    We present a study of electric, thermal and thermoelectric transport in elemental Bismuth, which presents a Nernst coefficient much larger than what was found in correlated metals. We argue that this is due to the combination of an exceptionally low carrier density with a very long electronic mean-free-path. The low thermomagnetic figure of merit is traced to the lightness of electrons. Heavy-electron semi-metals, which keep a metallic behavior in presence of a magnetic field, emerge as promising candidates for thermomagnetic cooling at low temperatures.Comment: 4 pages, including 4 figure
    • …
    corecore