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Abstract

Large eddy simulation (LES) of turbulent heat transfer in an in-
finite channel has been used to compare the performance of sev-
eral promising sub-filter-scale models for modelling the trans-
port of a passive scalar. The dynamic mixed model and the dy-
namic reconstruction model (a higher order version of the mixed
model) have been reported in the literature to perform very well
in LES of turbulent flow. Here these models are tested to deter-
mine the model’s suitability for modelling transport of a passive
scalar. These models together with the dynamic Smagorinsky
model and a no-model case, are tested at a Prandtl number of
0.71 and Reynolds number of 180 based on wall friction veloc-
ity and channel half width. Both the dynamic reconstruction
model and the dynamic mixed model perform very well show-
ing clear improvement in the prediction of the mean flow and
other turbulent statistics compared to the no-model case. The
standard dynamic Smagorinsky model without the additional
reconstruction terms performs quite poorly.

Introduction

In a large eddy simulation, a low pass filter is applied to the
governing equations, separating the large resolved scales from
the unresolved sub-filter-scales (SFS). In most LES simulations
the computational grid and the discretisation of the equations
provide the implicit filter, where the filter width is taken as being
proportional to the grid dimensions.

There are several difficulties however with the implicit nature of
the filter in these simulations. Firstly, with low order accuracy
finite difference schemes, the implicit filtering is smooth, mean-
ing it removes energy from the large resolved scales as well as
the small scales [3]. The energy removed from the large scales
then needs to be reconstructed by the SFS model. When only an
implicit filter is used, the shape of the filter is unknown making
this reconstruction difficult. Secondly, unless high order finite
differencing schemes are used, the numerical error in the small
resolved scales is significant. It has been long known that using
a grid size smaller than an explicitly applied filter would provide
a means of reducing the numerical error in the smallest resolved
scales. Recent work has suggested revisiting these ideas [1, 2].

Carati et al. [4] illustrate how combined discretisation — im-
plicit filtering (denoted by an operator G̃) and explicit filtering
(denoted by the operator Ḡ) — affects the decomposition of the
velocity field. The authors re-write the governing equations to
distinguish between the explicit filtering and discretisation op-
erations as follows,

∂ũi

∂xi
= 0, (1)
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where τi j = (uiu j)− (ũiũ j). Carati et al. [4] proposed that
the residual stresses from equation (2) could be decomposed
to τi j = τRSFS + τSGS where τSGS = (uiu j − ũiũ j) and τRSFS =

(ũiũ j− ¯̃ui ¯̃u j). τSGS is the sub grid scale (SGS) stress that cannot
be captured by the grid or implicit filter. τRSFS represents the
interactions of the resolved scales ( ¯̃u) and SFS motions (ũ− ¯̃u),
which are the filtered scales that are still supported by the grid.

These ideas have been successfully applied to several LES sim-
ulations of turbulent flow. Winckelmans et al. [6] formu-
lated a dynamic reconstruction model (DRM) based on the
explicit filtering framework they introduced. Gullbrand and
Chow [7] implemented a higher order version of the recon-
struction model and found improved performance over the dy-
namic mixed model (DMM) of Zang et al. [8] and the dy-
namic Smagorinsky model (DSM) of Germano et al. [9] in a
turbulent channel flow simulation. Gullbrand and Chow formu-
lated the SFS stress as follows, τRSFS = (ũ?

i ũ?
j )− ( ¯̃ui ¯̃u j) and

τSGS = −2cs(∆̃)2| ¯̃S| ¯̃Si j , where ũ?
i is an approximation of ũi

found using,

ũi ≈ ũ?
i =

N

∑
n=0

(I− Ḡ)nũi. (3)

In this way, the model is simply a higher order version of the dy-
namic mixed model of Zang et al. [8], where ũ in the τRSFS term
is approximated by ¯̃u instead of u?. Chow et al. [5] applied the
DRM to an atmospheric boundary layer simulation and found
improved performance compared with DSM and DMM mod-
els.

In this study the interest is in determining how the DRM model
performs when applied to turbulent transport of a passive scalar.

Much of the development in SFS heat flux models has followed
directly from models of the residual stress tensor in the mo-
mentum equations. The dynamic heat flux model proposed by
Moin et al. [10] is based on the dynamic Smagorinsky model of
Germano et al. [9]. The SFS heat flux (γ j) is modelled using,
γ j =−cθ∆̃2|S̃| ∂θ̃

∂x j
, where the model coefficient cθ is calculated

dynamically. Following this work a number of researchers have
proposed non-linear models for the SFS heat flux term, which
removes the assumption of alignment with the resolved tem-
perature gradient. Salvetti and Banerjee [11] developed a dy-
namic two parameter model (DTM) which is similar to DMM
of Zhang et al. [8]. In a priori tests the authors found both
DMM and DTM had a high degree of correlation with DNS data
for both heat flux and SFS stresses, while DSM was less satis-
factory. Jiménez et al. [12] tested DMM, DTM and DSM in a
mixing layer and found that the eddy diffusivity model works
well, provided the resolved velocity field is captured well. In
a posteriori tests, the authors found comparable results when
DSM was used for modelling γ j and DMM used for modelling
τi j and when DMM was used for both γ j and τi j. The results
were not as good when DSM was used for modelling both γ j
and τi j.

Peng and Davidson [13] developed a tensor diffusivity model
which formulates γ j ∝ −Si j∂θ/∂x j . Yin et al. [14] applied this
model in a simulation of turbulent channel flow with buoyancy.
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The authors found better agreement with DNS using the ten-
sor diffusivity model for γ j and a non linear model for τi j, than
using DSM for both γ j and τi j. Wang et al. [15] developed a
tensorial diffusivity model which the authors demonstrate is a
more general case of the two coefficient dynamic mixed model
of Sarghini et al. [16]. The model showed slightly improved
performance over DSM in a simulation of turbulent channel
flow.

The mixed models appear attractive both from the point of view
of the framework outlined by Carati et al. [4] and also from a
physical standpoint. In a priori tests, the mixed models show
stronger correlation with DNS results than models without the
τRSFS term [11]. In a postiori tests the mixed models have per-
formed well in many test cases [7, 8, 16, 17] and have been the
subject of continued interest and development. The reported
good performance of the mixed models for both SFS residual
stress and SFS heat flux is encouraging and suggests that DRM,
which is a higher order version of DMM, should also perform
well. In this study we compare the performance of DRM, DMM
and DSM for both SFS heat flux and SFS stress in a simulation
of turbulent channel flow with transport of a passive scalar. Two
aspects are of particular interest. Firstly, how the closure of the
SFS stress term τi j affects both the flow and the transport of the
scalar and secondly, how the closure of the SFS heat flux term
γ j performs.

Governing Equations

The models are tested in a fully developed turbulent chan-
nel flow simulation between two parallel vertical walls. The
streamwise (x) and spanwise directions (z) have periodic bound-
aries while no slip boundary conditions are used at the channel
walls. The flow is driven by a constant mean pressure gra-
dient, which becomes unity when the flow variables are non-
dimensionalised by the wall friction velocity uτ =

√
τw/ρ, and

the channel half width δ. The filtered conservation of mass and
momentum equations are given in equation (1) and (2) respec-
tively. The configuration tested is for channel flow with constant
heat flux at the walls. Buoyancy is not considered so tempera-
ture becomes a passive scalar. The statistically averaged tem-
perature increases linearly with respect to x. The instantaneous
temperature T , can be divided into the fluctuating component θ
and the mean component as follows,

T (x,y,z) =
d〈Tm〉

dx
−θ(x,y,z), (4)

where the mean component is found from an average across the
channel section,

〈Tm〉=

Z 1

0
ū1T̄ dy

/
Z 1

0
ū1dy, (5)

In this equation (̄) indicates statistical average in time. For
channel flow the streamwise temperature gradient is,

d〈Tm〉

dx
=

1
〈u〉

, (6)

where 〈u〉 is the time averaged velocity, averaged over the chan-
nel section. With this substitution, the equation for the transport
of the passive scalar becomes,

∂θ̃
∂t

+
∂

˜
(θ̃ũ j)

∂x j
=

ν
Pr

∂2θ̃
∂x j∂x j

−
∂γ̃
∂x j

+
u1

〈u〉
, (7)

where, γ = (θu j)− (θ̃ũ j). At the walls, the following boundary
conditions are enforced, u = 0, θ = 0 at y = 0 and y = 2δ.

SFS Models

Three SFS models are compared in this study, the dynamic
Smagorinsky model (DSM) of Germano et al. [9], the dynamic
mixed model (DMM) of Vreman et al. [17] and the dynamic
reconstruction model (DRM) of Gullbrand and Chow [7].

The dynamic Smagorinsky model is formulated as τi j =

−2cs(∆̃)2|S̃|S̃i j where the model coefficient and length scale
cs(∆)2 are calculated dynamically [9]. There is no explicit fil-
tering in the DSM model and τRSFS = 0. The DMM model SFS
term is formulated as,

τi j = ( ¯̃ui ¯̃u j)− ( ¯̄̃ui
¯̄̃u j)−2cs(∆̃)2| ¯̃S| ¯̃Si j. (8)

To formulate the dynamic model coefficient cs(∆̃)2, the equa-

tions are filtered to the ̂̃u level as follows,

∂̂̃ui

∂t
+

∂
˜

( ̂̃̄ui
̂̄̃u j)

∂x j
=−

∂̂̃p
∂xi

+
1

Reτ

∂2 ̂̃ui

∂x j∂x j
−

∂T̃i j

∂x j
, (9)

where Ti j =
̂

(uiu j)− (̂̄̃ui
̂̄̃u j). The expression for Li j is given as,

Li j = Ti j − τ̂i j = (̂̃̄ui ¯̃u j)− ( ˆ̄̃ui
ˆ̄̃u j). (10)

At the test level, the model for Ti j can be written as,

Ti j = (
̂̄̂
ũi

ˆ̄̃u j)− (
ˆ̄̂̄
ũi

ˆ̄̂̄
ũ j)−2cs(

ˆ̄∆)2|
ˆ̄̃S| ˆ̄̃Si j. (11)

Combining equations (8) and (11) using the definition for Li j
gives,

Li j = Ti j − τ̂i j, (12)

= (
̂̄̂
ũi

ˆ̄̃u j)− (
ˆ̄̂̄
ũi

ˆ̄̂̄
ũ j)−2cs(

ˆ̄∆)2|
ˆ̄̃S| ˆ̄̃Si j

− (
̂̃̄ui ¯̃u j −

̂̃̄̄ui
¯̄̃u j)−2cs(∆̃)2 |̂ ¯̃S| ¯̃Si j.

Equating equation (10) and equation (12) gives,

Li j −Hi j = 2cs(∆̃)2Mi j, (13)

where,

Hi j =
̂̄̂
ũi

ˆ̄̃u j −
ˆ̄̂̄
ũi

ˆ̄̂̄
ũ j − (

̂̃̄ui ¯̃u j −
̂̃̄̄ui

¯̄̃u j), (14)

and Mi j is given by,

Mi j =−σ2|
̂̃
S|

̂̃
Si j + |

̂̃
S|S̃i j, (15)

with σ =
ˆ̃̄∆/ ¯̃∆. The dynamic model coefficient is defined as,

cs(∆̃)2 =
〈Mi j(Li j −Hi j)〉

2〈MklMkl〉
. (16)

Here 〈〉 indicates a local averaging operation using the test filter
Ĝ. The scalar model is formulated similarly using,

γ = ( ¯̃θ ¯̃u j)− (
¯̃̄θ ¯̄̃u j)− cθ∆̃2| ¯̃S|

∂ ¯̃θ
∂x j

, (17)

and the model coefficients are calculated using,

cθ(∆)2 =−
〈Fj(E j −G j)〉

〈FkFk〉
, (18)

G j =
̂̄̂
θ̃ ˆ̄̃u j −

ˆ̄̂̄
θ̃

ˆ̄̂̄
ũ j − (

̂̃̄
θ ¯̃u j −

̂̃̄̄
θ ¯̄̃u j). (19)
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In the DRM, the residual stress is constructed as:

τi j = (ũ?
i ũ?

j)− ( ¯̃ui ¯̃u j)−2cs(∆̃)2| ¯̃S| ¯̃Si j, (20)

where ũ?
i is approximated using equation (3). To satisfy simi-

larity of the SFS model at the test level, Ti j must also be recon-
structed to below the filter level by the same degree. At the test
level, reconstruction may be interpreted as the inverse filtering
of Ĝ. Assuming perfect reconstruction, this may be represented
by the removal of a filter Ĝ. In this case Ti j may be written as,

Ti j = (
̂̃̄ui ¯̃u j)− ( ˆ̄̃̄ui

ˆ̄̃̄u j)−2cs(
ˆ̄∆)2|

ˆ̄̃S| ˆ̄̃Si j. (21)

When combined with the Germano identity following the same
approach as with the DMM, the model coefficient can be ob-
tained as,

cs(
¯̃∆)2 =

〈Mi j(Li j −Hi j)〉

〈MklMkl〉
, (22)

where Hi j = (
̂̃̄ui ¯̃u j)− ( ˆ̄̃̄ui

ˆ̄̃̄u j)− ( ̂̃u?
i ũ?

j −
̂̃̄ui ¯̃u j). The scalar SFS

model is formulated in a similar manner with,

γ = (θ̃?ũ?
j)− ( ¯̃θ ¯̃u j)−2cθ(∆̃)2| ¯̃S|

∂ ¯̃θ
∂x j

. (23)

In all simulations in this study, explicit filtering is only applied
in the SFS models, the velocity field itself is not filtered.

Numerical Procedure

The filtered equations are solved within a finite volume code
on a staggered Cartesian grid. Second-order central differenc-
ing has been used for the spatial discretisation on all terms in
the momentum and pressure correction equation. A fractional
step method is used to advance the solution in time with the ad-
vective terms integrated using a second order Adams-Bashforth
scheme and the diffusive terms using a second order accurate
Crank-Nicolson scheme. The PUFFIN code is described more
completely in [18].

The simulations have been chosen to match DNS results of Abe
et al. [19] at Reτ = uτδ/ν = 180 and Pr = 0.71. The domain
size is Lx = 12.8, Ly = 2.0 and Lz = 6.4 with the number of
nodes in each direction, nx = 64, ny = 74 and nz = 64. The
cell sizes in wall units are ∆x+ = 36, ∆z+ = 18, ∆y+

min = 0.7,
∆y+

max = 15.3. Constant linear stretching is used in the wall
normal direction (y) while a uniform mesh is used in the homo-
geneous directions (x,z). In this study the test and explicit filters
are only applied in x−z plane. A discrete two dimensional filter
can be written as,

G(i, j) = a(m)a(n) f (i+m, j +n). (24)

The filter coefficients a(m) and a(n) need to be specified. In
this study, the filters of Zang et al. [8] have been used where,
the filter Ḡ has coefficients a(−1) = 0.125, a(0) = 0.75, a(1) =
0.125, and the test filter Ĝ has coefficients a(−1) = 0.25, a(0) =
0.5, a(1) = 0.25.

The order of reconstruction in the DRM is been set at N = 5 in
equation (3). Initial tests have shown that increasing the level of
reconstruction to N = 10, produces little change in the results.

In all simulations the time step was monitored so that the CFL
number (CFL = ∆tui/∆xi) was maintained between 0.3− 0.4.
Simulations were run until a statistically stationary solution
was obtained which, for most simulations was ∼ 30 non-
dimensional time units (tuτ/δ). Statistics were then collected
over a further 15 non-dimensional time units.
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Figure 1: Mean streamwise velocity profile
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Figure 2: Traceless normal Reynolds stresses
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Figure 3: Total Reynolds stress Rxy
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Figure 4: Model subgrid scale shear stress τxy

Results and discussion

The mean streamwise velocity is shown in figure 1 where U+ =
〈u+〉 is given in wall units (where u+ = u/uτ, and y+ = yuτ/ν).
The mean velocity profiles are generally well captured, with
DMM and DRM performing better than DSM. In the centre of
the channel where the grid resolution is poorest, DRM is less ac-
curate than DMM. DSM is too dissipative over the entire range.
Outside the log-law region (y+ > 70), DRM underpredicts the
mean velocity. DRM appears to be applying insufficient dis-
sipation at the channel centre. This may be a low Reynolds
number effect.

The traceless normal stresses R∗
xx, R∗

yy and R∗
zz, are compared in

figure 2. They are calculated as, −Rxx = 〈u′u′〉− 〈τxx〉, where
〈〉 indicates an average over the x− z plane and time. The trace
is subtracted following, R∗

xx = Rxx−1/3(Rxx +Ryy +Rzz). This
is important because the dynamic Smagorinsky component of
the models provides no model for the trace and thus the nor-
mal stresses cannot be compared directly with DNS results un-
less the trace is removed [6]. It is also important to include the
model component, as this can be significant in the models with
the τRSFS term such as DRM or DMM. Gullbrand and Chow [7]
did not include the model component in their comparison and
came to the conclusion that the normal stresses were dramati-
cally better predicted by DMM and DRM. In fact, the resolved
component is simply reduced in these models as the SFS model
contributes more. Including the effect of the SFS model as in
figure 2, shows that the predicted normal stresses are similar
with all models.

The shear stress Rxy is shown in figure 3. This is calculated
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Figure 5: Mean temperature profile in wall units

as Rxy = −〈u′v′〉− 〈τxy〉, where u′ is the fluctuating resolved
velocity component calculated using, u = 〈u〉+ u′ and τxy is
the model component. The shear stress is well predicted by all
models, with clear improvements over the no-model case. DRM
performs slightly better than DSM in the buffer layer region for
y+ < 20. The model component for the shear stress, τxy, is
shown in figure 4. It is much greater for both DMM and DRM.
This is expected because the explicit filtering means that the
model represents a greater part of the spectrum.

The mean temperature profile is given in figure 5, non-
dimensionalised by wall friction temperature, 〈θ+〉 = 〈θ〉/Tτ
where Tτ = qw/ρcpuτ. The predictions of the temperature pro-
file are similar to those of the velocity profile. Both DRM and
DMM capture the behaviour better than the DSM. DRM does
not offer much improvement over DMM. None of the mod-
els capture the shape of the curve well in the log-law region
(y+ ∼ 20−70).

The scalar flux from the walls hy, is calculated as hy =
〈v′θ′〉/uτTτ + 〈γy〉/uτTτ. The results are given in figure 6 (a),
with the model component given in figure 6 (b). Again, there are
clear improvements over the no-model case. DMM, DRM and
DSM all perform well. DRM and DMM are perhaps slightly
better than DSM for y+ < 20. The model component γy be-
haves in a similar manner to τxy, with its value much lower in
the DSM simulation than with DRM and DMM.

Further tests have been conducted comparing the models per-
formance in channel flow with constant temperature difference
between the walls at Reτ = 150. The performance of the models
is similar to that in the isoflux case tested here.

Conclusions

Several Large Eddy Simulation models have been examined
within the framework of explicit filtering and reconstruction
outlined by Carati et al. [4]. The dynamic mixed and dy-
namic reconstruction models have been applied to the simula-
tion of transport of a passive scalar in a turbulent channel flow.
For the prediction of the turbulent stresses and the mean flow
statistics, all the models perform better than the no-model sim-
ulation. Both DMM and DRM perform better than DSM for
most of the quantities examined, particularly in the buffer re-
gion and through most of the log-law region. DRM appears to
offer some improvement over DMM, but overall the results are
mixed. DRM underpredicts the mean velocity in the centre of
the channel. The mean temperature and heat flux are generally
well predicted. DRM appears to perform slightly better than
DMM and DSM in the region close to the wall. The scalar flux
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Figure 6: Resolved and modelled temperature flux from the wall (a) and model subgrid heat flux hy (b)

from the wall was quite well predicted by DRM and DMM for
y+ < 20. The no-model and DSM simulations were less accu-
rate in this region.

Overall, DRM and DMM are promising concepts, for both the
scalar SGS model and the residual stress. For most of the statis-
tics examined, both models perform better than DSM. In sev-
eral of the statistics examined however, their performance was
mixed, so more work is needed before they can be trusted in
more difficult simulations. Further tests are needed at higher
Reynolds number to confirm these results.
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