566 research outputs found

    Nitric oxide and iron signaling cues have opposing effects on biofilm development in Pseudomonas aeruginosa

    Full text link
    © 2019 American Society for Microbiology. While both iron and nitric oxide (NO) are redox-active environmental signals shown to regulate biofilm development, their interaction and roles in regulating biofilms have not been fully elucidated. In this study, exposure of Pseudomonas aeruginosa biofilms to exogenous NO inhibited the expression of iron acquisition-related genes and the production of the siderophore pyoverdine. Furthermore, supplementation of the culture medium with high levels of iron (100μM) counteracted NO-induced biofilm dispersal by promoting the rapid attachment of planktonic cells. In the presence of iron, biofilms were found to disperse transiently to NO, while the freshly dispersed cells reattached rapidly within 15 min. This effect was not due to the scavenging of NO by free iron but involved a cellular response induced by iron that led to the elevated production of the exopolysaccharide Psl. Interestingly, most Psl remained on the substratum after treatment with NO, suggesting that dispersal involved changes in the interactions between Psl and P. aeruginosa cells. Taken together, our results suggest that iron and NO regulate biofilm development via different pathways, both of which include the regulation of Psl-mediated attachment. Moreover, the addition of an iron chelator worked synergistically with NO in the dispersal of biofilms

    Quel tableau géographique des paysages ligériens ?

    Get PDF
    Les paysages de la vallée de la Loire sont fortement marqués par la dynamique du fleuve et de ses affluents qui ont créé une mosaïque de terroirs avec les châteaux, les jardins, une diversité du bâti, des espaces agraires calqués sur les conditions pédoclimatiques. Ces paysages ont subi plusieurs révolutions, industrielles et agricoles, qui les ont profondément transformés. Nous vivons aujourd\u27hui une nouvelle révolution marquée par l\u27extension et la densification urbaine et par l\u27émergence de paysages-vitrines modelés par l\u27écologie et des usages essentiellement touristiques

    A silicon-based single-electron interferometer coupled to a fermionic sea

    Full text link
    We study Landau-Zener-Stueckelberg-Majorana (LZSM) interferometry under the influence of projective readout using a charge qubit tunnel-coupled to a fermionic sea. This allows us to characterise the coherent charge qubit dynamics in the strong-driving regime. The device is realised within a silicon complementary metal-oxide-semiconductor (CMOS) transistor. We first read out the charge state of the system in a continuous non-demolition manner by measuring the dispersive response of a high-frequency electrical resonator coupled to the quantum system via the gate. By performing multiple fast passages around the qubit avoided crossing, we observe a multi-passage LZSM interferometry pattern. At larger driving amplitudes, a projective measurement to an even-parity charge state is realised, showing a strong enhancement of the dispersive readout signal. At even larger driving amplitudes, two projective measurements are realised within the coherent evolution resulting in the disappearance of the interference pattern. Our results demonstrate a way to increase the state readout signal of coherent quantum systems and replicate single-electron analogues of optical interferometry within a CMOS transistor

    Nitrite production by ammonia-oxidizing bacteria mediates chloramine decay and resistance in a mixed-species community.

    Full text link
    As water distribution centres increasingly switch to using chloramine to disinfect drinking water, it is of paramount importance to determine the interactions of chloramine with potential biological contaminants, such as bacterial biofilms, that are found in these systems. For example, ammonia-oxidizing bacteria (AOB) are known to accelerate the decay of chloramine in drinking water systems, but it is also known that organic compounds can increase the chloramine demand. This study expanded upon our previously published model to compare the decay of chloramine in response to alginate, Pseudomonas aeruginosa, Nitrosomonas europaea and a mixed-species nitrifying culture, exploring the contributions of microbial by-products, heterotrophic bacteria and AOBs to chloramine decay. Furthermore, the contribution of AOBs to biofilm stability during chloramination was investigated. The results demonstrate that the biofilm matrix or extracellular polymeric substances (EPS), represented by alginate in these experiments, as well as high concentrations of dead or inactive cells, can drive chloramine decay rather than any specific biochemical activity of P. aeruginosa cells. Alginate was shown to reduce chloramine concentrations in a dose-dependent manner at an average rate of 0.003 mg l-1  h-1 per mg l-1 of alginate. Additionally, metabolically active AOBs mediated the decay of chloramine, which protected members of mixed-species biofilms from chloramine-mediated disinfection. Under these conditions, nitrite produced by AOBs directly reacted with chloramine to drive its decay. In contrast, biofilms of mixed-species communities that were dominated by heterotrophic bacteria due to either the absence of ammonia, or the addition of nitrification inhibitors and glucose, were highly sensitive to chloramine. These results suggest that mixed-species biofilms are protected by a combination of biofilm matrix-mediated inactivation of chloramine as well as the conversion of ammonia to nitrite through the activity of AOBs present in the community

    Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems

    Full text link
    © 2016 American Chemical Society. In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now feasible with fluorescence microscopy (epifluorescence and CLSM imaging with DNA, RNA, EPS, and protein and lipid stains) and electron microscopy imaging (ESEM). Importantly, thorough identification of microbial fingerprints in drinking water biofilms is achievable with DNA sequencing techniques (the 16S rRNA gene-based identification), which have revealed a prevalence of previously undetected bacterial members. Technologies are now moving toward in situ monitoring of biomass growth in distribution networks, including the development of optical fibers capable of differentiating biomass from chemical deposits. Taken together, management of biofilm growth in water distribution systems requires an integrated approach, starting from the treatment of water prior to entering the networks to the potential implementation of "biofilm-limiting" operational conditions and, finally, ending with the careful selection of available technologies for biofilm monitoring and control. For the latter, conventional practices, including chlorine-chloramine disinfection, flushing of DWDS, nutrient removal, and emerging technologies are discussed with their associated challenges

    Biofilm formation inhibition and dispersal of multi-species communities containing ammonia-oxidising bacteria

    Full text link
    © 2019, The Author(s). Despite considerable research, the biofilm-forming capabilities of Nitrosomonas europaea are poorly understood for both mono and mixed-species communities. This study combined biofilm assays and molecular techniques to demonstrate that N. europaea makes very little biofilm on its own, and relies on the activity of associated heterotrophic bacteria to establish a biofilm. However, N. europaea has a vital role in the proliferation of mixed-species communities under carbon-limited conditions, such as in drinking water distribution systems, through the provision of organic carbon via ammonia oxidation. Results show that the addition of nitrification inhibitors to mixed-species nitrifying cultures under carbon-limited conditions disrupted biofilm formation and caused the dispersal of pre-formed biofilms. This dispersal effect was not observed when an organic carbon source, glucose, was included in the medium. Interestingly, inhibition of nitrification activity of these mixed-species biofilms in the presence of added glucose resulted in increased total biofilm formation compared to controls without the addition of nitrification inhibitors, or with only glucose added. This suggests that active AOB partially suppress or limit the overall growth of the heterotrophic bacteria. The experimental model developed here provides evidence that ammonia-oxidising bacteria (AOB) are involved in both the formation and maintenance of multi-species biofilm communities. The results demonstrate that the activity of the AOB not only support the growth and biofilm formation of heterotrophic bacteria by providing organic carbon, but also restrict and limit total biomass in mixed community systems

    Biofilm formation inhibition and dispersal of multi-species communities containing ammonia-oxidising bacteria.

    Full text link
    Despite considerable research, the biofilm-forming capabilities of Nitrosomonas europaea are poorly understood for both mono and mixed-species communities. This study combined biofilm assays and molecular techniques to demonstrate that N. europaea makes very little biofilm on its own, and relies on the activity of associated heterotrophic bacteria to establish a biofilm. However, N. europaea has a vital role in the proliferation of mixed-species communities under carbon-limited conditions, such as in drinking water distribution systems, through the provision of organic carbon via ammonia oxidation. Results show that the addition of nitrification inhibitors to mixed-species nitrifying cultures under carbon-limited conditions disrupted biofilm formation and caused the dispersal of pre-formed biofilms. This dispersal effect was not observed when an organic carbon source, glucose, was included in the medium. Interestingly, inhibition of nitrification activity of these mixed-species biofilms in the presence of added glucose resulted in increased total biofilm formation compared to controls without the addition of nitrification inhibitors, or with only glucose added. This suggests that active AOB partially suppress or limit the overall growth of the heterotrophic bacteria. The experimental model developed here provides evidence that ammonia-oxidising bacteria (AOB) are involved in both the formation and maintenance of multi-species biofilm communities. The results demonstrate that the activity of the AOB not only support the growth and biofilm formation of heterotrophic bacteria by providing organic carbon, but also restrict and limit total biomass in mixed community systems

    Ferrous ion as reducing agent in the generation of antibiofilm nitric oxide from copper-based catalytic system.

    Full text link
    The work found that the electron-donating properties of ferrous ions (Fe2+) can be used for the conversion of nitrite (NO2-) into the biofilm-dispersing signal nitric oxide (NO) by a copper(II) complex (CuDTTCT) catalyst, a potentially applicable biofilm control technology for the water industries. The availability of Fe2+ varied depending on the characteristics of the aqueous systems (phosphate- and carbonate-containing nitrifying bacteria growth medium, NBGM and phosphate buffered saline, PBS at pH 6 to 8, to simulate conditions typically present in the water industries) and was found to affect the production of NO from nitrite by CuDTTCT (casted into PVC). Greater amounts of NO were generated from the CuDTTCT-nitrite-Fe2+ systems in PBS compared to those in NBGM, which was associated with the reduced extent of Fe2+-to-Fe3+ autoxidation by the iron-precipitating moieties phosphates and carbonate in the former system. Further, acidic conditions at pH 6.0 were found to favor NO production from the catalytic system in both PBS and NBGM compared to neutral or basic pH (pH 7.0 or 8.0). Lower pH was shown to stabilize Fe2+ and reduce its autoxidation to Fe3+. These findings will be beneficial for the potential implementation of the NO-generating catalytic technology and indeed, a 'non-killing' biofilm dispersal activity of CuDTTCT-nitrite-Fe2+ was observed on nitrifying bacteria biofilms in PBS at pH 6

    Salmonella enterica biofilm-mediated dispersal by nitric oxide donors in association with cellulose nanocrystal hydrogels

    Get PDF
    Protected by extracellular polymers, microbes within biofilms are significantly more resistant to disinfectants. Current research has been instrumental in identifying nitric oxide donors and hydrogels as potential disinfectant additives. Nitric oxide (NO) donors are considered a very promising molecule as biofilm dispersal agents and hydrogels have recently attracted a lot of interest due to their biocompatible properties and ability to form stable thin films. When the NO donor MAHMA NONOate was dissolved in phosphate saline buffer, it was able to reduce the biomass of well-established biofilms up to 15% for at least 24 h of contact time. Encapsulation of MAHMA NONOate and molsidomine within a hydrogel composed of cellulose nanocrystals (CNC) has shown a synergistic effect in dispersing well-established biofilms: after 2 h of exposure, moderate but significant dispersion was measured. After 6 h of exposure, the number of cells transitioning from the biofilm to the planktonic state was up to 0.6 log higher when compared with non-treated biofilms. To further explore the transport processes of NO donors within hydrogels, we measured the nitric oxide flux from gels, at 25°C for a composite of 0.1 µM MAHMA NONOate–CNC. Nitric oxide diffuses up to 500 µm from the hydrogel surface, with flux decreasing according to Fick’s law. 60% of NO was released from the hydrogel composite during the first 23 min. These data suggest that the combined treatments with nitric oxide donor and hydrogels may allow for new sustainable cleaning strategies
    • …
    corecore