22 research outputs found

    Different methodological approaches to the assessment of in vivo efficacy of three artemisinin-based combination antimalarial treatments for the treatment of uncomplicated falciparum malaria in African children.

    Get PDF
    BACKGROUND: Use of different methods for assessing the efficacy of artemisinin-based combination antimalarial treatments (ACTs) will result in different estimates being reported, with implications for changes in treatment policy. METHODS: Data from different in vivo studies of ACT treatment of uncomplicated falciparum malaria were combined in a single database. Efficacy at day 28 corrected by PCR genotyping was estimated using four methods. In the first two methods, failure rates were calculated as proportions with either (1a) reinfections excluded from the analysis (standard WHO per-protocol analysis) or (1b) reinfections considered as treatment successes. In the second two methods, failure rates were estimated using the Kaplan-Meier product limit formula using either (2a) WHO (2001) definitions of failure, or (2b) failure defined using parasitological criteria only. RESULTS: Data analysed represented 2926 patients from 17 studies in nine African countries. Three ACTs were studied: artesunate-amodiaquine (AS+AQ, N = 1702), artesunate-sulphadoxine-pyrimethamine (AS+SP, N = 706) and artemether-lumefantrine (AL, N = 518).Using method (1a), the day 28 failure rates ranged from 0% to 39.3% for AS+AQ treatment, from 1.0% to 33.3% for AS+SP treatment and from 0% to 3.3% for AL treatment. The median [range] difference in point estimates between method 1a (reference) and the others were: (i) method 1b = 1.3% [0 to 24.8], (ii) method 2a = 1.1% [0 to 21.5], and (iii) method 2b = 0% [-38 to 19.3].The standard per-protocol method (1a) tended to overestimate the risk of failure when compared to alternative methods using the same endpoint definitions (methods 1b and 2a). It either overestimated or underestimated the risk when endpoints based on parasitological rather than clinical criteria were applied. The standard method was also associated with a 34% reduction in the number of patients evaluated compared to the number of patients enrolled. Only 2% of the sample size was lost when failures were classified on the first day of parasite recurrence and survival analytical methods were used. CONCLUSION: The primary purpose of an in vivo study should be to provide a precise estimate of the risk of antimalarial treatment failure due to drug resistance. Use of survival analysis is the most appropriate way to estimate failure rates with parasitological recurrence classified as treatment failure on the day it occurs

    New Antenatal Model in Africa and India (NAMAI) study: implementation research to improve antenatal care using WHO recommendations

    Get PDF
    Background: In 2020, an estimated 287 000 women died globally from pregnancy‐related causes and 2 million babies were stillborn. Many of these outcomes can be prevented by quality healthcare during pregnancy and childbirth. Within the continuum of maternal health, antenatal care (ANC) is a key moment in terms of contact with the health system, yet it remains an underutilized platform. This paper describes the protocol for a study conducted in collaboration with Ministries of Health and country research partners that aims to employ implementation science to systematically introduce and test the applicability of the adapted WHO ANC package in selected sites across four countries. Methods: Study design is a mixed methods stepped-wedge cluster randomized implementation trial with a nested cohort component (in India and Burkina Faso). The intervention is composed of two layers: (i) the country- (or state)-specific ANC package, including evidence-based interventions to improve maternal and newborn health outcomes, and (ii) the co-interventions (or implementation strategies) to help delivery and uptake of the adapted ANC package. Using COM-B model, co-interventions support behaviour change among health workers and pregnant women by (1) training health workers on the adapted ANC package and ultrasound (except in India), (2) providing supplies, (3) conducting mentoring and supervision and (4) implementing community mobilization strategies. In Rwanda and Zambia, a fifth strategy includes a digital health intervention. Qualitative data will be gathered from health workers, women and their families, to gauge acceptability of the adapted ANC package and its components, as well as experience of care. The implementation of the adapted ANC package of interventions, and their related costs, will be documented to understand to what extent the co-interventions were performed as intended, allowing for iteration. Discussion: Results from this study aim to build the global evidence base on how to implement quality ANC across different settings and inform pathways to scale, which will ultimately lead to stronger health systems with better maternal and perinatal outcomes. On the basis of the study results, governments will be able to adopt and plan for national scale-up, aiming to improve ANC nationally. This evidence will inform global guidance. Trial registration number: ISRCTN, ISRCTN16610902. Registered 27 May 2022. https://www.isrctn.com/ISRCTN16610902

    Artemisinin-based combinations versus amodiaquine plus sulphadoxine-pyrimethamine for the treatment of uncomplicated malaria in Faladje, Mali

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of the emergence of chloroquine resistance in Mali, artemether-lumefantrine (AL) or artesunate-amodiaquine (AS+AQ) are recommended as first-line therapy for uncomplicated malaria, but have not been available in Mali until recently because of high costs.</p> <p>Methods</p> <p>From July 2005 to January 2006, a randomized open-label trial of three oral antimalarial combinations, namely AS+AQ, artesunate plus sulphadoxine-pyrimethamine (AS+SP), and amodiaquine plus sulphadoxine-pyrimethamine (AQ+SP), was conducted in Faladje, Mali. Parasite genotyping by polymerase chain reaction (PCR) was used to distinguish new from recrudescent <it>Plasmodium falciparum </it>infections.</p> <p>Results</p> <p>397 children 6 to 59 months of age with uncomplicated <it>Plasmodium falciparum </it>malaria were enrolled, and followed for 28 days to assess treatment efficacy. Baseline characteristics were similar in all three treatment groups. The uncorrected rates of adequate clinical and parasitologic response (ACPR) were 55.7%, 90.8%, and 97.7% in AS+AQ, AS+SP, and AQ+SP respectively (p < 0.001); after PCR correction ACPR rates were similar among treatment groups: 95.4%, 96.9%, and 99.2% respectively (p = 0.17). Mean haemoglobin concentration increased across all treatment groups from Day 0 (9.82 ± 1.68 g/dL) to Day 28 (10.78 ± 1.49 g/dL) (p < 0.001), with the greatest improvement occurring in children treated with AQ+SP. On Day 2, the prevalence of parasitaemia was significantly greater among children treated with AQ+SP (50.8%) than in children treated with AS+AQ (10.5%) or AS+SP (10.8%) (p < 0.001). No significant difference in gametocyte carriage was found between groups during the follow-up period.</p> <p>Conclusion</p> <p>The combination of AQ+SP provides a potentially low cost alternative for treatment of uncomplicated <it>P. falciparum </it>infection in Mali and appears to have the added value of longer protective effect against new infection.</p

    Malaria case-management under artemether-lumefantrine treatment policy in Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Case-management with artemether-lumefantrine (AL) is one of the key strategies to control malaria in many African countries. Yet, the reports on translation of AL implementation activities into clinical practice are scarce. Here the quality of AL case-management is reported from Uganda; approximately one year after AL replaced combination of chloroquine and sulphadoxine-pyrimethamine (CQ+SP) as recommended first line treatment for uncomplicated malaria.</p> <p>Methods</p> <p>A cross-sectional survey, using a range of quality of care assessment tools, was undertaken at all government and private-not-for-profit facilities in four Ugandan districts. Main outcome measures were AL prescribing, dispensing and counseling practices in comparison with national guidelines, and factors influencing health workers decision to 1) treat for malaria, and 2) prescribe AL.</p> <p>Results</p> <p>195 facilities, 232 health workers and 1,763 outpatient consultations were evaluated. Of 1,200 patients who needed treatment with AL according to guidelines, AL was prescribed for 60%, CQ+SP for 14%, quinine for 4%, CQ for 3%, other antimalarials for 3%, and 16% of patients had no antimalarial drug prescribed. AL was prescribed in the correct dose for 95% of patients. Only three out of seven AL counseling and dispensing tasks were performed for more than 50% of patients. Patients were more likely to be treated for malaria if they presented with main complaint of fever (OR = 5.22; 95% CI: 3.61–7.54) and if they were seen by supervised health workers (OR = 1.63; 95% CI: 1.06–2.50); however less likely if they were treated by more qualified health workers (OR = 0.61; 95% CI: 0.40–0.93) and presented with skin problem (OR = 0.29; 95% CI: 0.15–0.55). AL was more likely prescribed if the appropriate weight-specific AL pack was in stock (OR = 6.15; 95% CI: 3.43–11.05) and when CQ was absent (OR = 2.16; 95% CI: 1.09–4.28). Routine AL implementation activities were not associated with better performance.</p> <p>Conclusion</p> <p>Although the use of AL was predominant over non-recommended therapies, the quality of AL case-management at the point of care is not yet optimal. There is an urgent need for innovative quality improvement interventions, which should be rigorously tested. Adequate availability of ACTs at the point of care will, however, ultimately determine the success of any performance interventions and ACT policy transitions.</p

    Monitoring antimalarial safety and tolerability in clinical trials: A case study from Uganda

    Get PDF
    BACKGROUND: New antimalarial regimens, including artemisinin-based combination therapies (ACTs), have been adopted widely as first-line treatment for uncomplicated malaria. Although these drugs appear to be safe and well-tolerated, experience with their use in Africa is limited and continued assessment of safety is a priority. However, no standardized guidelines for evaluating drug safety and tolerability in malaria studies exist. A system for monitoring adverse events in antimalarial trials conducted in Uganda was developed. Here the reporting system is described, and difficulties faced in analysing and interpreting the safety results are illustrated, using data from the trials. CASE DESCRIPTION: Between 2002 and 2007, eleven randomized, controlled clinical trials were conducted to compare the efficacy, safety, and tolerability of different antimalarial regimens for treatment of uncomplicated malaria in Uganda. The approach to adverse event monitoring was similar in all studies. A total of 5,614 treatments were evaluated in 4,876 patients. Differences in baseline characteristics and patterns of adverse event reporting were noted between the sites, which limited the ability to pool and analyse data. Clinical failure following antimalarial treatment confounded associations between treatment and adverse events that were also common symptoms of malaria, particularly in areas of lower transmission intensity. DISCUSSION AND EVALUATION: Despite prospectively evaluating for adverse events, limitations in the monitoring system were identified. New standardized guidelines for monitoring safety and tolerability in antimalarial trials are needed, which should address how to detect events of greatest importance, including serious events, those with a causal relationship to the treatment, those which impact on adherence, and events not previously reported. CONCLUSION: Although the World Health Organization has supported the development of pharmacovigilance systems in African countries deploying ACTs, additional guidance on adverse events monitoring in antimalarial clinical trials is needed, similar to the standardized recommendations available for assessment of drug efficacy

    Uganda's experience in Ebola virus disease outbreak preparedness, 2018-2019.

    Get PDF
    BACKGROUND: Since the declaration of the 10th Ebola Virus Disease (EVD) outbreak in DRC on 1st Aug 2018, several neighboring countries have been developing and implementing preparedness efforts to prevent EVD cross-border transmission to enable timely detection, investigation, and response in the event of a confirmed EVD outbreak in the country. We describe Uganda's experience in EVD preparedness. RESULTS: On 4 August 2018, the Uganda Ministry of Health (MoH) activated the Public Health Emergency Operations Centre (PHEOC) and the National Task Force (NTF) for public health emergencies to plan, guide, and coordinate EVD preparedness in the country. The NTF selected an Incident Management Team (IMT), constituting a National Rapid Response Team (NRRT) that supported activation of the District Task Forces (DTFs) and District Rapid Response Teams (DRRTs) that jointly assessed levels of preparedness in 30 designated high-risk districts representing category 1 (20 districts) and category 2 (10 districts). The MoH, with technical guidance from the World Health Organisation (WHO), led EVD preparedness activities and worked together with other ministries and partner organisations to enhance community-based surveillance systems, develop and disseminate risk communication messages, engage communities, reinforce EVD screening and infection prevention measures at Points of Entry (PoEs) and in high-risk health facilities, construct and equip EVD isolation and treatment units, and establish coordination and procurement mechanisms. CONCLUSION: As of 31 May 2019, there was no confirmed case of EVD as Uganda has continued to make significant and verifiable progress in EVD preparedness. There is a need to sustain these efforts, not only in EVD preparedness but also across the entire spectrum of a multi-hazard framework. These efforts strengthen country capacity and compel the country to avail resources for preparedness and management of incidents at the source while effectively cutting costs of using a "fire-fighting" approach during public health emergencies

    Increasing malaria hospital admissions in Uganda between 1999 and 2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some areas of Africa are witnessing a malaria transition, in part due to escalated international donor support and intervention coverage. Areas where declining malaria rates have been observed are largely characterized by relatively low baseline transmission intensity and rapid scaling of interventions. Less well described are changing patterns of malaria burden in areas of high parasite transmission and slower increases in control and treatment access.</p> <p>Methods</p> <p>Uganda is a country predominantly characterized by intense, perennial malaria transmission. Monthly pediatric admission data from five Ugandan hospitals and their catchments have been assembled retrospectively across 11 years from January 1999 to December 2009. Malaria admission rates adjusted for changes in population density within defined catchment areas were computed across three time periods that correspond to periods where intervention coverage data exist and different treatment and prevention policies were operational. Time series models were developed adjusting for variations in rainfall and hospital use to examine changes in malaria hospitalization over 132 months. The temporal changes in factors that might explain changes in disease incidence were qualitatively examined sequentially for each hospital setting and compared between hospital settings</p> <p>Results</p> <p>In four out of five sites there was a significant increase in malaria admission rates. Results from time series models indicate a significant month-to-month increase in the mean malaria admission rates at four hospitals (trend <it>P </it>< 0.001). At all hospitals malaria admissions had increased from 1999 by 47% to 350%. Observed changes in intervention coverage within the catchments of each hospital showed a change in insecticide-treated net coverage from <1% in 2000 to 33% by 2009 but accompanied by increases in access to nationally recommended drugs at only two of the five hospital areas studied.</p> <p>Conclusions</p> <p>The declining malaria disease burden in some parts of Africa is not a universal phenomena across the continent. Despite moderate increases in the coverage of measures to reduce infection and disease without significant coincidental increasing access to effective medicines to treat disease may not lead to severe disease burden reductions in high transmission areas of Africa. More data is needed from a wider range of malaria settings to provide an honest tracking progress of the impact of scaled intervention coverage in Africa.</p

    Haematological consequences of acute uncomplicated falciparum malaria: a WorldWide Antimalarial Resistance Network pooled analysis of individual patient data

    Get PDF
    Background: Plasmodium falciparum malaria is associated with anaemia-related morbidity, attributable to host, parasite and drug factors. We quantified the haematological response following treatment of uncomplicated P. falciparum malaria to identify the factors associated with malarial anaemia. Methods: Individual patient data from eligible antimalarial efficacy studies of uncomplicated P. falciparum malaria, available through the WorldWide Antimalarial Resistance Network data repository prior to August 2015, were pooled using standardised methodology. The haematological response over time was quantified using a multivariable linear mixed effects model with nonlinear terms for time, and the model was then used to estimate the mean haemoglobin at day of nadir and day 7. Multivariable logistic regression quantified risk factors for moderately severe anaemia (haemoglobin < 7 g/dL) at day 0, day 3 and day 7 as well as a fractional fall ≥ 25% at day 3 and day 7. Results: A total of 70,226 patients, recruited into 200 studies between 1991 and 2013, were included in the analysis: 50,859 (72.4%) enrolled in Africa, 18,451 (26.3%) in Asia and 916 (1.3%) in South America. The median haemoglobin concentration at presentation was 9.9 g/dL (range 5.0–19.7 g/dL) in Africa, 11.6 g/dL (range 5.0–20.0 g/dL) in Asia and 12.3 g/dL (range 6.9–17.9 g/dL) in South America. Moderately severe anaemia (Hb < 7g/dl) was present in 8.4% (4284/50,859) of patients from Africa, 3.3% (606/18,451) from Asia and 0.1% (1/916) from South America. The nadir haemoglobin occurred on day 2 post treatment with a mean fall from baseline of 0.57 g/dL in Africa and 1.13 g/dL in Asia. Independent risk factors for moderately severe anaemia on day 7, in both Africa and Asia, included moderately severe anaemia at baseline (adjusted odds ratio (AOR) = 16.10 and AOR = 23.00, respectively), young age (age < 1 compared to ≥ 12 years AOR = 12.81 and AOR = 6.79, respectively), high parasitaemia (AOR = 1.78 and AOR = 1.58, respectively) and delayed parasite clearance (AOR = 2.44 and AOR = 2.59, respectively). In Asia, patients treated with an artemisinin-based regimen were at significantly greater risk of moderately severe anaemia on day 7 compared to those treated with a non-artemisinin-based regimen (AOR = 2.06 [95%CI 1.39–3.05], p < 0.001). Conclusions: In patients with uncomplicated P. falciparum malaria, the nadir haemoglobin occurs 2 days after starting treatment. Although artemisinin-based treatments increase the rate of parasite clearance, in Asia they are associated with a greater risk of anaemia during recovery

    Intensity of malaria transmission, antimalarial-drug use and resistance in Uganda: what is the relationship between these three factors?

    No full text
    We studied (in 1998 and 1999) some factors that may be linked to the spread of chloroquine (CQ) and sulfadoxine-pyrimethamine (SP) resistance in 7 discrete communities in Uganda. Exposure to malaria infection was measured by parasitological surveys in children aged 1-9 years, drug use by community surveys and drug resistance by in-vivo tests on children aged 6-59 months with clinical malaria. CQ use was inversely related to parasite prevalence (r = -0.85, P = 0.01). CQ and SP treatment failure rates varied significantly according to parasite prevalence (P = 0.001 and 0.04 respectively). The highest CQ (42.4%, 43.8%) and SP (12.5%, 14.8%) treatment failure rates were observed in sites characterized by high parasite prevalence. Using areas with medium parasite prevalence as reference, the relative risk (RR) for CQ treatment failure was 3.2 (95% CI 1.6-6.4) in high parasite prevalence sites and 3.1 (95% CI 1.2-7.7) in low parasite prevalence sites. The RR for SP treatment failure was also higher in sites with high parasite prevalence but low in those with low parasite prevalence. According to our findings, drug resistance seems to spread faster in higher transmission areas, regardless of drug pressure. In low transmission areas, drug pressure seems to be the critical factor. A decrease in transmission coupled with rational use of drugs may delay the spread of resistance

    IDSR as a platform for implementing IHR in African countries.

    No full text
    Of the 46 countries in the World Health Organization (WHO) African region (AFRO), 43 are implementing Integrated Disease Surveillance and Response (IDSR) guidelines to improve their abilities to detect, confirm, and respond to high-priority communicable and noncommunicable diseases. IDSR provides a framework for strengthening the surveillance, response, and laboratory core capacities required by the revised International Health Regulations [IHR (2005)]. In turn, IHR obligations can serve as a driving force to sustain national commitments to IDSR strategies. The ability to report potential public health events of international concern according to IHR (2005) relies on early warning systems founded in national surveillance capacities. Public health events reported through IDSR to the WHO Emergency Management System in Africa illustrate the growing capacities in African countries to detect, assess, and report infectious and noninfectious threats to public health. The IHR (2005) provide an opportunity to continue strengthening national IDSR systems so they can characterize outbreaks and respond to public health events in the region
    corecore