450 research outputs found
Dynamical Diffraction Theory for Wave Packet Propagation in Deformed Crystals
We develop a theory for the trajectory of an x ray in the presence of a
crystal deformation. A set of equations of motion for an x-ray wave packet
including the dynamical diffraction is derived, taking into account the Berry
phase as a correction to geometrical optics. The trajectory of the wave packet
has a shift of the center position due to a crystal deformation. Remarkably, in
the vicinity of the Bragg condition, the shift is enhanced by a factor (: frequency of an x ray, : gap frequency
induced by the Bragg reflection). Comparison with the conventional dynamical
diffraction theory is also made.Comment: 4 pages, 2 figures. Title change
Spatiotemporal Response of Crystals in X-ray Bragg Diffraction
The spatiotemporal response of crystals in x-ray Bragg diffraction resulting
from excitation by an ultra-short, laterally confined x-ray pulse is studied
theoretically. The theory presents an extension of the analysis in symmetric
reflection geometry [1] to the generic case, which includes Bragg diffraction
both in reflection (Bragg) and transmission (Laue) asymmetric scattering
geometries. The spatiotemporal response is presented as a product of a
crystal-intrinsic plane wave spatiotemporal response function and an envelope
function defined by the crystal-independent transverse profile of the incident
beam and the scattering geometry. The diffracted wavefields exhibit amplitude
modulation perpendicular to the propagation direction due to both angular
dispersion and the dispersion due to Bragg's law. The characteristic measure of
the spatiotemporal response is expressed in terms of a few parameters: the
extinction length, crystal thickness, Bragg angle, asymmetry angle, and the
speed of light. Applications to self-seeding of hard x-ray free electron lasers
are discussed, with particular emphasis on the relative advantages of using
either the Bragg or Laue scattering geometries. Intensity front inclination in
asymmetric diffraction can be used to make snapshots of ultra-fast processes
with femtosecond resolution
The probe beam linac in CTF3
JACoW web site http://accelconf.web.cern.ch/AccelConf/e06/The test facility CTF3, presently under construction at CERN within an international collaboration, is aimed at demonstrating the key feasibility issues of the multi-TeV linear collider CLIC. The objective of the probe beam linac is to "mimic" the main beam of CLIC in order to measure precisely the performances of the 30 GHz CLIC accelerating structures. In order to meet the required parameters of this 200 MeV probe beam, in terms of emittance, energy spread and bunch-length, the most advanced techniques have been considered: laser triggered photo-injector, velocity bunching, beam-loading compensation, RF pulse compression ... The final layout is described, and the selection criteria and the beam dynamics results are reviewed
The Drift Chambers Of The Nomad Experiment
We present a detailed description of the drift chambers used as an active
target and a tracking device in the NOMAD experiment at CERN. The main
characteristics of these chambers are a large area, a self supporting structure
made of light composite materials and a low cost. A spatial resolution of 150
microns has been achieved with a single hit efficiency of 97%.Comment: 42 pages, 26 figure
Theory and Applications of X-ray Standing Waves in Real Crystals
Theoretical aspects of x-ray standing wave method for investigation of the
real structure of crystals are considered in this review paper. Starting from
the general approach of the secondary radiation yield from deformed crystals
this theory is applied to different concreat cases. Various models of deformed
crystals like: bicrystal model, multilayer model, crystals with extended
deformation field are considered in detailes. Peculiarities of x-ray standing
wave behavior in different scattering geometries (Bragg, Laue) are analysed in
detailes. New possibilities to solve the phase problem with x-ray standing wave
method are discussed in the review. General theoretical approaches are
illustrated with a big number of experimental results.Comment: 101 pages, 43 figures, 3 table
The NOMAD experiment at the CERN SPS
The NOMAD experiment is a short base-line search for oscillations in the CERN neutrino beam. The 's are searched for through their charged-current interactions followed by the observation of the resulting through its electronic, muonic or hadronic decays. These decays are recognized using kinematical criteria necessitating the use of a light target which enables the reconstruction of individual particles produced in the neutrino interactions. This paper describes the various components of the NOMAD detector: the target and muon drift chambers, the electromagnetic and hadronic calorimeters, the preshower and transition radiation detectors, and the veto and trigger scintillation counters. The beam and data acquisition system are also described. The quality of the reconstruction of individual particles is demonstrated through the ability of NOMAD to observe K's, 's and 's. Finally, the observation of through its electronic decay being one of the most promising channels in the search, the identification of electrons in NOMAD is discussed
The NOMAD Experiment at the CERN SPS
The NOMAD experiment is a short base-line search for ν<sub>μ</sub> − ν<sub>τ</sub> oscillations in the CERN neutrino beam. The ν<sub>τ</sub>'s are searched for through their charged current interactions followed by the observation of the resulting τ− through its electronic, muonic or hadronic decays. These decays are recognized using kinematical criteria necessitating the use of a light target which enables the reconstruction of individual particles produced in the neutrino interactions. This paper describes the various components of the NOMAD detector: the target and muon drift chambers, the electromagnetic and hadronic calorimeters, the preshower and transition radiation detectors and the veto and trigger scintillation counters. The beam and data acquisition system are also described. The quality of the reconstruction and individual particles is demonstrated through the ability of NOMAD to observe K<sub>s</sub><sup>0</sup>'s, Λ<sup>0</sup>'s and π<sup>0</sup>'s. Finally, the observation of τ− through its electronic decay being one of the most promising channels in the search, the identification of electrons in NOMAD is discussed
- …
