450 research outputs found

    Dynamical Diffraction Theory for Wave Packet Propagation in Deformed Crystals

    Full text link
    We develop a theory for the trajectory of an x ray in the presence of a crystal deformation. A set of equations of motion for an x-ray wave packet including the dynamical diffraction is derived, taking into account the Berry phase as a correction to geometrical optics. The trajectory of the wave packet has a shift of the center position due to a crystal deformation. Remarkably, in the vicinity of the Bragg condition, the shift is enhanced by a factor ω/Δω\omega /\Delta \omega (ω\omega: frequency of an x ray, Δω\Delta\omega: gap frequency induced by the Bragg reflection). Comparison with the conventional dynamical diffraction theory is also made.Comment: 4 pages, 2 figures. Title change

    Spatiotemporal Response of Crystals in X-ray Bragg Diffraction

    Full text link
    The spatiotemporal response of crystals in x-ray Bragg diffraction resulting from excitation by an ultra-short, laterally confined x-ray pulse is studied theoretically. The theory presents an extension of the analysis in symmetric reflection geometry [1] to the generic case, which includes Bragg diffraction both in reflection (Bragg) and transmission (Laue) asymmetric scattering geometries. The spatiotemporal response is presented as a product of a crystal-intrinsic plane wave spatiotemporal response function and an envelope function defined by the crystal-independent transverse profile of the incident beam and the scattering geometry. The diffracted wavefields exhibit amplitude modulation perpendicular to the propagation direction due to both angular dispersion and the dispersion due to Bragg's law. The characteristic measure of the spatiotemporal response is expressed in terms of a few parameters: the extinction length, crystal thickness, Bragg angle, asymmetry angle, and the speed of light. Applications to self-seeding of hard x-ray free electron lasers are discussed, with particular emphasis on the relative advantages of using either the Bragg or Laue scattering geometries. Intensity front inclination in asymmetric diffraction can be used to make snapshots of ultra-fast processes with femtosecond resolution

    The probe beam linac in CTF3

    Get PDF
    JACoW web site http://accelconf.web.cern.ch/AccelConf/e06/The test facility CTF3, presently under construction at CERN within an international collaboration, is aimed at demonstrating the key feasibility issues of the multi-TeV linear collider CLIC. The objective of the probe beam linac is to "mimic" the main beam of CLIC in order to measure precisely the performances of the 30 GHz CLIC accelerating structures. In order to meet the required parameters of this 200 MeV probe beam, in terms of emittance, energy spread and bunch-length, the most advanced techniques have been considered: laser triggered photo-injector, velocity bunching, beam-loading compensation, RF pulse compression ... The final layout is described, and the selection criteria and the beam dynamics results are reviewed

    The Drift Chambers Of The Nomad Experiment

    Get PDF
    We present a detailed description of the drift chambers used as an active target and a tracking device in the NOMAD experiment at CERN. The main characteristics of these chambers are a large area, a self supporting structure made of light composite materials and a low cost. A spatial resolution of 150 microns has been achieved with a single hit efficiency of 97%.Comment: 42 pages, 26 figure

    Theory and Applications of X-ray Standing Waves in Real Crystals

    Full text link
    Theoretical aspects of x-ray standing wave method for investigation of the real structure of crystals are considered in this review paper. Starting from the general approach of the secondary radiation yield from deformed crystals this theory is applied to different concreat cases. Various models of deformed crystals like: bicrystal model, multilayer model, crystals with extended deformation field are considered in detailes. Peculiarities of x-ray standing wave behavior in different scattering geometries (Bragg, Laue) are analysed in detailes. New possibilities to solve the phase problem with x-ray standing wave method are discussed in the review. General theoretical approaches are illustrated with a big number of experimental results.Comment: 101 pages, 43 figures, 3 table

    The NOMAD experiment at the CERN SPS

    Get PDF
    The NOMAD experiment is a short base-line search for νμντ\nu_{\mu}\rightarrow \nu_{\tau} oscillations in the CERN neutrino beam. The ντ\nu_{\tau}'s are searched for through their charged-current interactions followed by the observation of the resulting τ\tau^{-} through its electronic, muonic or hadronic decays. These decays are recognized using kinematical criteria necessitating the use of a light target which enables the reconstruction of individual particles produced in the neutrino interactions. This paper describes the various components of the NOMAD detector: the target and muon drift chambers, the electromagnetic and hadronic calorimeters, the preshower and transition radiation detectors, and the veto and trigger scintillation counters. The beam and data acquisition system are also described. The quality of the reconstruction of individual particles is demonstrated through the ability of NOMAD to observe Ks0^0_{\rm s}'s, Λ0\Lambda^0's and π0\pi^0's. Finally, the observation of τ\tau^{-} through its electronic decay being one of the most promising channels in the search, the identification of electrons in NOMAD is discussed

    The NOMAD Experiment at the CERN SPS

    Get PDF
    The NOMAD experiment is a short base-line search for ν<sub>μ</sub> − ν<sub>τ</sub> oscillations in the CERN neutrino beam. The ν<sub>τ</sub>'s are searched for through their charged current interactions followed by the observation of the resulting τ− through its electronic, muonic or hadronic decays. These decays are recognized using kinematical criteria necessitating the use of a light target which enables the reconstruction of individual particles produced in the neutrino interactions. This paper describes the various components of the NOMAD detector: the target and muon drift chambers, the electromagnetic and hadronic calorimeters, the preshower and transition radiation detectors and the veto and trigger scintillation counters. The beam and data acquisition system are also described. The quality of the reconstruction and individual particles is demonstrated through the ability of NOMAD to observe K<sub>s</sub><sup>0</sup>'s, Λ<sup>0</sup>'s and π<sup>0</sup>'s. Finally, the observation of τ− through its electronic decay being one of the most promising channels in the search, the identification of electrons in NOMAD is discussed

    The NOMAD Experiment at the CERN SPS

    Get PDF
    corecore