188 research outputs found
Extended Classical Over-Barrier Model for Collisions of Highly Charged Ions with Conducting and Insulating Surfaces
We have extended the classical over-barrier model to simulate the
neutralization dynamics of highly charged ions interacting under grazing
incidence with conducting and insulating surfaces. Our calculations are based
on simple model rates for resonant and Auger transitions. We include effects
caused by the dielectric response of the target and, for insulators, localized
surface charges. Characteristic deviations regarding the charge transfer
processes from conducting and insulating targets to the ion are discussed. We
find good agreement with previously published experimental data for the image
energy gain of a variety of highly charged ions impinging on Au, Al, LiF and KI
crystals.Comment: 32 pages http://pikp28.uni-muenster.de/~ducree
Design of magnetic materials: CoCrFeAl
Doped Heusler compounds CoCrFeAl with varying Cr to Fe
ratio were investigated experimentally and theoretically. The electronic
structure of the ordered, doped Heusler compound CoCrFeAl
( was calculated using different types of band structure
calculations. The ordered compounds turned out to be ferromagnetic with small
Al magnetic moment being aligned anti-parallel to the 3d transition metal
moments. All compounds show a gap around the Fermi-energy in the minority
bands. The pure compounds exhibit an indirect minority gap, whereas the
ordered, doped compounds exhibit a direct gap. Magnetic circular dichroism
(MCD) in X-ray absorption spectra was measured at the edges of Co,
Fe, and Cr of the pure compounds and the alloy in order to determine
element specific magnetic moments. Calculations and measurements show an
increase of the magnetic moments with increasing iron content. The
experimentally observed reduction of the magnetic moment of Cr can be explained
by Co-Cr site-disorder. The presence of the gap in the minority bands of
CoCrAl can be attributed to the occurrence of pure Co and mixed CrAl
(001)-planes in the structure. It is retained in structures with
different order of the CrAl planes but vanishes in the -structure with
alternating CoCr and CoAl planes.Comment: corrected author lis
Electronic structure and spectroscopy of the quaternary Heusler alloy CoCrFeAl
Quaternary Heusler alloys CoCrFeAl with varying Cr to Fe
ratio were investigated experimentally and theoretically. The electronic
structure and spectroscopic properties were calculated using the full
relativistic Korringa-Kohn-Rostocker method with coherent potential
approximation to account for the random distribution of Cr and Fe atoms as well
as random disorder. Magnetic effects are included by the use of spin dependent
potentials in the local spin density approximation.
Magnetic circular dichroism in X-ray absorption was measured at the
edges of Co, Fe, and Cr of the pure compounds and the alloy in order to
determine element specific magnetic moments. Calculations and measurements show
an increase of the magnetic moments with increasing iron content. Resonant
(560eV - 800eV) soft X-ray as well as high resolution - high energy (keV) hard X-ray photo emission was used to probe the density of the
occupied states in CoCrFeAl.Comment: J.Phys.D_Appl.Phys. accepte
Recommended from our members
State of the California current 2012-13: No such thing as an âaverageâ year
This report reviews the state of the California Current System (CCS) between winter 2012 and spring 2013, and includes observations from Washington State to Baja California. During 2012, large-scale climate modes indicated the CCS remained in a cool, productive phase present since 2007. The upwelling season was delayed north of 42°N, but regions to the south, especially 33° to 36°N, experienced average to above average upwelling that persisted throughout the summer. Contrary to the indication of high production suggested by the climate indices, chlorophyll observed from surveys and remote sensing was below average along much of the coast. As well, some members of the forage assemblages along the coast experienced low abundances in 2012 surveys. Specifically, the concentrations of all lifestages observed directly or from egg densities of Pacific sardine, Sardinops sagax, and northern anchovy, Engraulis mordax, were less than previous yearsâ survey estimates. However, 2013 surveys and observations indicate an increase in abundance of northern anchovy. During winter 2011/2012, the increased presence of northern copepod species off northern California was consistent with stronger southward transport. Krill and small-fraction zooplankton abundances, where examined, were generally above average. North of 42°N, salps returned to typical abundances in 2012 after greater observed concentrations in 2010 and 2011. In contrast, salp abundance off central and southern California increased after a period of southward transport during winter 2011/2012. Reproductive success of piscivorous Brandtâs cormorant, Phalacrocorax penicillatus, was reduced while planktivorous Cassinâs auklet, Ptychoramphus aleuticus was elevated. Differences between the productivity of these two seabirds may be related to the available forage assemblage observed in the surveys. California sea lion pups from San Miguel Island were undernourished resulting in a pup mortality event perhaps in response to changes in forage availability. Limited biological data were available for spring 2013, but strong winter upwelling coastwide indicated an early spring transition, with the strong upwelling persisting into early summer
The natural history of primary sclerosing cholangitis in 781 children. A multicenter, international collaboration
There are limited data on the natural history of primary sclerosing cholangitis (PSC) in children. We aimed to describe the disease characteristics and long-term outcomes of pediatric PSC. We retrospectively collected all pediatric PSC cases from 36 participating institutions and conducted a survival analysis from the date of PSC diagnosis to dates of diagnosis of portal hypertensive or biliary complications, cholangiocarcinoma, liver transplantation, or death. We analyzed patients grouped by disease phenotype and laboratory studies at diagnosis to identify objective predictors of long-term outcome. We identified 781 patients, median age 12 years, with 4,277 person-years of follow-up; 33% with autoimmune hepatitis, 76% with inflammatory bowel disease, and 13% with small duct PSC. Portal hypertensive and biliary complications developed in 38% and 25%, respectively, after 10 years of disease. Once these complications developed, median survival with native liver was 2.8 and 3.5 years, respectively. Cholangiocarcinoma occurred in 1%. Overall event-free survival was 70% at 5 years and 53% at 10 years. Patient groups with the most elevated total bilirubin, gamma-glutamyltransferase, and aspartate aminotransferase-to-platelet ratio index at diagnosis had the worst outcomes. In multivariate analysis PSC-inflammatory bowel disease and small duct phenotypes were associated with favorable prognosis (hazard ratios 0.6, 95% confidence interval 0.5-0.9, and 0.7, 95% confidence interval 0.5-0.96, respectively). Age, gender, and autoimmune hepatitis overlap did not impact long-term outcome.
CONCLUSION:
PSC has a chronic, progressive course in children, and nearly half of patients develop an adverse liver outcome after 10 years of disease; elevations in bilirubin, gamma-glutamyltransferase, and aspartate aminotransferase-to-platelet ratio index at diagnosis can identify patients at highest risk; small duct PSC and PSC-inflammatory bowel disease are more favorable disease phenotypes
Effect of transport-induced charge inhomogeneity on point-contact Andreev reflection spectra at ferromagnet-superconductor interfaces
We investigate the transport properties of a ferromagnet-superconductor
interface within the framework of a modified three-dimensional
Blonder-Tinkham-Klapwijk formalism. In particular, we propose that charge
inhomogeneity forms via two unique transport mechanisms, namely, evanescent
Andreev reflection and evanescent quasiparticle transmission. Furthermore, we
take into account the influence of charge inhomogeneity on the interfacial
barrier potential and calculate the conductance as a function of bias voltage.
Point-contact Andreev reflection (PCAR) spectra often show dip structures,
large zero-bias conductance enhancement, and additional zero-bias conductance
peak. Our results indicate that transport-induced charge inhomogeneity could be
a source of all these anomalous characteristics of the PCAR spectra.Comment: 9 pages, 6 figure
Deficiency in origin licensing proteins impairs cilia formation: implications for the aetiology of meier-gorlin syndrome
Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency
Long-term culture of cholangiocytes from liver fibro-granulomatous lesions
BACKGROUND: Extensive bile duct proliferation is a key feature of the tissue reaction to clinical and experimental forms of liver injury. Experimental infection of mice by Schistosoma mansoni is a well-studied model of liver fibrosis with bile duct hyperplasia. However, the regulatory mechanisms of bile duct changes are not well understood. In this study we report the reproducible isolation of long-term cultures of cholangiocytes from mice livers with schistosomal fibrosis. METHODS: We have isolated a cholangiocyte cell line from Schistosoma-induced liver granulomas using a combination of methods including selective adhesion and isopyknic centrifugation in Percoll. RESULTS: The cell line was characterized by morphological criteria in optical and transmission electron microscopy, ability to form well differentiated ductular structures in collagen gels and by a positive staining for cytokeratin 18 and cytokeratin 19. To our knowledge, this is the first murine cholangiocyte cell line isolated from schistosomal fibrosis reported in the literature. CONCLUSION: After 9 months and 16 passages this diploid cell line maintained differentiated characteristics and a high proliferative capacity. We believe the method described here may be a valuable tool to study bile duct changes during hepatic injury
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
Does Deep Tectonic Tremor Occur in the CentralâEastern Mediterranean Basin?
Tectonic tremor has been observed at the roots of many fault systems around the Pacific rim, including convergent and transform plate boundaries. The extent to which deep tremor signals are prevalent along fault systems elsewhere, including the Mediterranean basin, has not yet been documented in detail. A body of evidence suggests that tremor triggered during the surface waves of teleseismic events may commonly occur where ambient tremor during episodic tremor and slip episodes occur, suggesting triggered tremor provides a useful tool to identify regions with ambient tremor. We perform a systematic search of triggered tremor associated with large teleseismic events between 2010 and 2020 at four major fault systems within the central-eastern Mediterranean basin, namely the Hellenic and Calabrian subduction zones, and the North Anatolian and Kefalonia transform faults. In addition, we search for ambient tremor during a slow slip event in the eastern Sea of Marmara along a secondary branch of the North Anatolian Fault, and two slow slip events beneath western Peloponnese (Hellenic Subduction Zone). We find no unambiguous evidence for deep triggered tremor, nor ambient tremor. The absence of triggered tremor at the Hellenic and Calabrian subduction zones supports an interpretation of less favorable conditions for tremorgenesis in the presence of old and cold slabs. The absence of tremor along the transform faults may be due to an absence of the conditions commonly promoting tremorgenesis in such settings, including high-fluid pressures and low-differential stresses between the down-dip limit of the seismogenic layer and the continental Moho
- âŠ