291 research outputs found
Ion irradiation-induced easy-cone anisotropy in double-MgO free layers for perpendicular magnetic tunnel junctions
We have used the ferromagnetic resonance in the X-band (9.37 GHz) to investigate the effect of 400 keV Ar+ irradiation on the perpendicular magnetic anisotropy (PMA) and Gilbert damping parameter, α, of double-MgO free layers designed for application in perpendicular magnetic tunnel junctions. The samples comprised a MgO / Fe72Co8B20 / X(0.2 nm) / Fe72Co8B20 / MgO layer stack, where X stands for an ultrathin Ta or W spacer. Samples with two different total FeCoB layer thicknesses, tFCB = 3.0 nm and tFCB = 2.6 nm, were irradiated with ion fluences ranging from 1012 cm-2 to 1016 cm-2. The effective first-order PMA field, BK1, decreased nearly linearly with the logarithm of the fluence for both FeCoB thicknesses and spacer elements. The decrease in BK1, which is likely caused by an ion-induced intermixing at the FeCoB/MgO interfaces, resulted in a reorientation of the magnetization of the free layers with tFCB = 2.6 nm, initially exhibiting a perpendicular easy-axis anisotropy. For intermediate fluences, 1013 cm-2 and 1014 cm-2, easy-cone states with different cone angles could be induced in the free layer with a W spacer. Importantly, no corresponding increase in the Gilbert damping was observed. This study shows that ion irradiation can be used to tune the easy-cone anisotropy in perpendicular magnetic tunnel junctions, which is interesting for spintronic applications such as spin-torque magnetic memories, oscillators and sensors.publishe
The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field
Nanoscale magnetic skyrmions are considered as potential information carriers
for future spintronics memory and logic devices. Such applications will require
the control of their local creation and annihilation, which involves so far
solutions that are either energy consuming or difficult to integrate. Here we
demonstrate the control of skyrmion bubbles nucleation and annihilation using
electric field gating, an easily integrable and potentially energetically
efficient solution. We present a detailed stability diagram of the skyrmion
bubbles in a Pt/Co/oxide trilayer and show that their stability can be
controlled via an applied electric field. An analytical bubble model, with the
Dzyaloshinskii-Moriya interaction imbedded in the domain wall energy, account
for the observed electrical skyrmion switching effect. This allows us to unveil
the origin of the electrical control of skyrmions stability and to show that
both magnetic dipolar interaction and the Dzyaloshinskii-Moriya interaction
play an important role in the skyrmion bubble stabilization
Electron-deuteron scattering in a current-conserving description of relativistic bound states: formalism and impulse approximation calculations
The electromagnetic interactions of a relativistic two-body bound state are
formulated in three dimensions using an equal-time (ET) formalism. This
involves a systematic reduction of four-dimensional dynamics to a
three-dimensional form by integrating out the time components of relative
momenta. A conserved electromagnetic current is developed for the ET formalism.
It is shown that consistent truncations of the electromagnetic current and the
interaction kernel may be made, order-by-order in the coupling constants,
such that appropriate Ward-Takahashi identities are satisfied. A meson-exchange
model of the interaction is used to calculate deuteron vertex functions.
Calculations of electromagnetic form factors for elastic scattering of
electrons by deuterium are performed using an impulse-approximation current.
Negative-energy components of the deuteron's vertex function and retardation
effects in the meson-exchange interaction are found to have only minor effects
on the deuteron form factors.Comment: 42 pages, RevTe
On isovector meson exchange currents in the Bethe-Salpeter approach
We investigate the nonrelativistic reduction of the Bethe-Salpeter amplitude
for the deuteron electrodisintegration near threshold energies. To this end,
two assumptions have been used in the calculations: 1) the static approximation
and 2) the one iteration approximation. Within these assumptions it is possible
to recover the nonrelativistic result including a systematic extension to
relativistic corrections. We find that the so-called pair current term can be
constructed from the -wave contribution of the deuteron Bethe-Salpeter
amplitude. The form factor that enters into the calculation of the pair current
is constrained by the manifestly gauge independent matrix elements.Comment: 15 pages, incl. 3 figures, to be published Phys. Rev.
Consistent Treatment of Relativistic Effects in Electrodisintegration of the Deuteron
The influence of relativistic contributions to deuteron electrodisintegration
is systematically studied in various kinematic regions of energy and momentum
transfer. As theoretical framework the equation-of-motion and the unitarily
equivalent S-matrix approaches are used. In a (p/M)-expansion, all leading
order relativistic -exchange contributions consistent with the Bonn OBEPQ
model are included. In addition, static heavy meson exchange currents including
boost terms, -currents, and -isobar contributions
are considered. Sizeable effects from the various relativistic two-body
contributions, mainly from -exchange, have been found in inclusive form
factors and exclusive structure functions for a variety of kinematic regions.Comment: 41 pages revtex including 15 postscript figure
Elastic electron deuteron scattering with consistent meson exchange and relativistic contributions of leading order
The influence of relativistic contributions to elastic electron deuteron
scattering is studied systematically at low and intermediate momentum transfers
( fm). In a -expansion, all leading order
relativistic -exchange contributions consistent with the Bonn OBEPQ models
are included. In addition, static heavy meson exchange currents including boost
terms and lowest order -currents are considered. Sizeable
effects from the various relativistic two-body contributions, mainly from
-exchange, have been found in form factors, structure functions and the
tensor polarization . Furthermore, static properties, viz. magnetic
dipole and charge quadrupole moments and the mean square charge radius are
evaluated.Comment: 15 pages Latex including 5 figures, final version accepted for
publication in Phys.Rev.C Details of changes: (i) The notation of the curves
in Figs. 1 and 2 have been clarified with respect to left and right panels.
(ii) In Figs. 3 and 4 an experimental point for T_20 has been added and a
corresponding reference [48] (iii) At the end of the text we have added a
paragraph concerning the quality of the Bonn OBEPQ potential
Femtometer Toroidal Structures in Nuclei
The two-nucleon density distributions in states with isospin , spin
=1 and projection =0 and 1 are studied in H, He,
Li and O. The equidensity surfaces for =0 distributions are
found to be toroidal in shape, while those of =1 have dumbbell shapes
at large density. The dumbbell shapes are generated by rotating tori. The
toroidal shapes indicate that the tensor correlations have near maximal
strength at fm in all these nuclei. They provide new insights and simple
explanations of the structure and electromagnetic form factors of the deuteron,
the quasi-deuteron model, and the , and =2 (-wave)
components in He, He and Li. The toroidal distribution has a
maximum-density diameter of 1 fm and a half-maximum density thickness of
0.9 fm. Many realistic models of nuclear forces predict these values,
which are supported by the observed electromagnetic form factors of the
deuteron, and also predicted by classical Skyrme effective Lagrangians, related
to QCD in the limit of infinite colors. Due to the rather small size of this
structure, it could have a revealing relation to certain aspects of QCD.Comment: 35 pages in REVTeX, 25 PostScript figure
Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures
Magnetic skyrmions are chiral spin structures with a whirling configuration.
Their topological properties, nanometer size and the fact that they can be
moved by small current densities have opened a new paradigm for the
manipulation of magnetisation at the nanoscale. To date, chiral skyrmion
structures have been experimentally demonstrated only in bulk materials and in
epitaxial ultrathin films and under external magnetic field or at low
temperature. Here, we report on the observation of stable skyrmions in
sputtered ultrathin Pt/Co/MgO nanostructures, at room temperature and zero
applied magnetic field. We use high lateral resolution X-ray magnetic circular
dichroism microscopy to image their chiral N\'eel internal structure which we
explain as due to the large strength of the Dzyaloshinskii-Moriya interaction
as revealed by spin wave spectroscopy measurements. Our results are
substantiated by micromagnetic simulations and numerical models, which allow
the identification of the physical mechanisms governing the size and stability
of the skyrmions.Comment: Submitted version. Extended version to appear in Nature
Nanotechnolog
- …