291 research outputs found

    Ion irradiation-induced easy-cone anisotropy in double-MgO free layers for perpendicular magnetic tunnel junctions

    Get PDF
    We have used the ferromagnetic resonance in the X-band (9.37 GHz) to investigate the effect of 400 keV Ar+ irradiation on the perpendicular magnetic anisotropy (PMA) and Gilbert damping parameter, α, of double-MgO free layers designed for application in perpendicular magnetic tunnel junctions. The samples comprised a MgO / Fe72Co8B20 / X(0.2 nm) / Fe72Co8B20 / MgO layer stack, where X stands for an ultrathin Ta or W spacer. Samples with two different total FeCoB layer thicknesses, tFCB = 3.0 nm and tFCB = 2.6 nm, were irradiated with ion fluences ranging from 1012 cm-2 to 1016 cm-2. The effective first-order PMA field, BK1, decreased nearly linearly with the logarithm of the fluence for both FeCoB thicknesses and spacer elements. The decrease in BK1, which is likely caused by an ion-induced intermixing at the FeCoB/MgO interfaces, resulted in a reorientation of the magnetization of the free layers with tFCB = 2.6 nm, initially exhibiting a perpendicular easy-axis anisotropy. For intermediate fluences, 1013 cm-2 and 1014 cm-2, easy-cone states with different cone angles could be induced in the free layer with a W spacer. Importantly, no corresponding increase in the Gilbert damping was observed. This study shows that ion irradiation can be used to tune the easy-cone anisotropy in perpendicular magnetic tunnel junctions, which is interesting for spintronic applications such as spin-torque magnetic memories, oscillators and sensors.publishe

    The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field

    Full text link
    Nanoscale magnetic skyrmions are considered as potential information carriers for future spintronics memory and logic devices. Such applications will require the control of their local creation and annihilation, which involves so far solutions that are either energy consuming or difficult to integrate. Here we demonstrate the control of skyrmion bubbles nucleation and annihilation using electric field gating, an easily integrable and potentially energetically efficient solution. We present a detailed stability diagram of the skyrmion bubbles in a Pt/Co/oxide trilayer and show that their stability can be controlled via an applied electric field. An analytical bubble model, with the Dzyaloshinskii-Moriya interaction imbedded in the domain wall energy, account for the observed electrical skyrmion switching effect. This allows us to unveil the origin of the electrical control of skyrmions stability and to show that both magnetic dipolar interaction and the Dzyaloshinskii-Moriya interaction play an important role in the skyrmion bubble stabilization

    Electron-deuteron scattering in a current-conserving description of relativistic bound states: formalism and impulse approximation calculations

    Get PDF
    The electromagnetic interactions of a relativistic two-body bound state are formulated in three dimensions using an equal-time (ET) formalism. This involves a systematic reduction of four-dimensional dynamics to a three-dimensional form by integrating out the time components of relative momenta. A conserved electromagnetic current is developed for the ET formalism. It is shown that consistent truncations of the electromagnetic current and the NNNN interaction kernel may be made, order-by-order in the coupling constants, such that appropriate Ward-Takahashi identities are satisfied. A meson-exchange model of the NNNN interaction is used to calculate deuteron vertex functions. Calculations of electromagnetic form factors for elastic scattering of electrons by deuterium are performed using an impulse-approximation current. Negative-energy components of the deuteron's vertex function and retardation effects in the meson-exchange interaction are found to have only minor effects on the deuteron form factors.Comment: 42 pages, RevTe

    On isovector meson exchange currents in the Bethe-Salpeter approach

    Get PDF
    We investigate the nonrelativistic reduction of the Bethe-Salpeter amplitude for the deuteron electrodisintegration near threshold energies. To this end, two assumptions have been used in the calculations: 1) the static approximation and 2) the one iteration approximation. Within these assumptions it is possible to recover the nonrelativistic result including a systematic extension to relativistic corrections. We find that the so-called pair current term can be constructed from the PP-wave contribution of the deuteron Bethe-Salpeter amplitude. The form factor that enters into the calculation of the pair current is constrained by the manifestly gauge independent matrix elements.Comment: 15 pages, incl. 3 figures, to be published Phys. Rev.

    Consistent Treatment of Relativistic Effects in Electrodisintegration of the Deuteron

    Get PDF
    The influence of relativistic contributions to deuteron electrodisintegration is systematically studied in various kinematic regions of energy and momentum transfer. As theoretical framework the equation-of-motion and the unitarily equivalent S-matrix approaches are used. In a (p/M)-expansion, all leading order relativistic π\pi-exchange contributions consistent with the Bonn OBEPQ model are included. In addition, static heavy meson exchange currents including boost terms, γπρ/ω\gamma\pi\rho/\omega-currents, and Δ\Delta-isobar contributions are considered. Sizeable effects from the various relativistic two-body contributions, mainly from π\pi-exchange, have been found in inclusive form factors and exclusive structure functions for a variety of kinematic regions.Comment: 41 pages revtex including 15 postscript figure

    Elastic electron deuteron scattering with consistent meson exchange and relativistic contributions of leading order

    Get PDF
    The influence of relativistic contributions to elastic electron deuteron scattering is studied systematically at low and intermediate momentum transfers (Q230Q^2\leq 30 fm2^{-2}). In a (p/M)(p/M)-expansion, all leading order relativistic π\pi-exchange contributions consistent with the Bonn OBEPQ models are included. In addition, static heavy meson exchange currents including boost terms and lowest order ρπγ\rho\pi\gamma-currents are considered. Sizeable effects from the various relativistic two-body contributions, mainly from π\pi-exchange, have been found in form factors, structure functions and the tensor polarization T20T_{20}. Furthermore, static properties, viz. magnetic dipole and charge quadrupole moments and the mean square charge radius are evaluated.Comment: 15 pages Latex including 5 figures, final version accepted for publication in Phys.Rev.C Details of changes: (i) The notation of the curves in Figs. 1 and 2 have been clarified with respect to left and right panels. (ii) In Figs. 3 and 4 an experimental point for T_20 has been added and a corresponding reference [48] (iii) At the end of the text we have added a paragraph concerning the quality of the Bonn OBEPQ potential

    Femtometer Toroidal Structures in Nuclei

    Get PDF
    The two-nucleon density distributions in states with isospin T=0T=0, spin SS=1 and projection MSM_S=0 and ±\pm1 are studied in 2^2H, 3,4^{3,4}He, 6,7^{6,7}Li and 16^{16}O. The equidensity surfaces for MSM_S=0 distributions are found to be toroidal in shape, while those of MSM_S=±\pm1 have dumbbell shapes at large density. The dumbbell shapes are generated by rotating tori. The toroidal shapes indicate that the tensor correlations have near maximal strength at r<2r<2 fm in all these nuclei. They provide new insights and simple explanations of the structure and electromagnetic form factors of the deuteron, the quasi-deuteron model, and the dpdp, dddd and αd\alpha d LL=2 (DD-wave) components in 3^3He, 4^4He and 6^6Li. The toroidal distribution has a maximum-density diameter of \sim1 fm and a half-maximum density thickness of \sim0.9 fm. Many realistic models of nuclear forces predict these values, which are supported by the observed electromagnetic form factors of the deuteron, and also predicted by classical Skyrme effective Lagrangians, related to QCD in the limit of infinite colors. Due to the rather small size of this structure, it could have a revealing relation to certain aspects of QCD.Comment: 35 pages in REVTeX, 25 PostScript figure

    Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures

    Full text link
    Magnetic skyrmions are chiral spin structures with a whirling configuration. Their topological properties, nanometer size and the fact that they can be moved by small current densities have opened a new paradigm for the manipulation of magnetisation at the nanoscale. To date, chiral skyrmion structures have been experimentally demonstrated only in bulk materials and in epitaxial ultrathin films and under external magnetic field or at low temperature. Here, we report on the observation of stable skyrmions in sputtered ultrathin Pt/Co/MgO nanostructures, at room temperature and zero applied magnetic field. We use high lateral resolution X-ray magnetic circular dichroism microscopy to image their chiral N\'eel internal structure which we explain as due to the large strength of the Dzyaloshinskii-Moriya interaction as revealed by spin wave spectroscopy measurements. Our results are substantiated by micromagnetic simulations and numerical models, which allow the identification of the physical mechanisms governing the size and stability of the skyrmions.Comment: Submitted version. Extended version to appear in Nature Nanotechnolog
    corecore