67 research outputs found

    Orchestration of signaling by structural disorder in class 1 cytokine receptors

    Get PDF
    Background:Class 1 cytokine receptors (C1CRs) are single-pass transmembrane proteins responsible for transmitting signals between the outside and the inside of cells. Remarkably, they orchestrate key biological processes such as proliferation, differentiation, immunity and growth through long disordered intracellular domains (ICDs), but without having intrinsic kinase activity. Despite these key roles, their characteristics remain rudimentarily understood.Methods:The current paper asks the question of why disorder has evolved to govern signaling of C1CRs by reviewing the literature in combination with new sequence and biophysical analyses of chain properties across the family.Results:We uncover that the C1CR-ICDs are fully disordered and brimming with SLiMs. Many of these short linear motifs (SLiMs) are overlapping, jointly signifying a complex regulation of interactions, including network rewiring by isoforms. The C1CR-ICDs have unique properties that distinguish them from most IDPs and we forward the perception that the C1CR-ICDs are far from simple strings with constitutively bound kinases. Rather, they carry both organizational and operational features left uncovered within their disorder, including mechanisms and complexities of regulatory functions.Conclusions:Critically, the understanding of the fascinating ability of these long, completely disordered chains to orchestrate complex cellular signaling pathways is still in its infancy, and we urge a perceptional shift away from the current simplistic view towards uncovering their full functionalities and potential

    Order and disorder - An integrative structure of the full-length human growth hormone receptor

    Get PDF
    Because of its small size (70 kilodalton) and large content of structural disorder (>50%), the human growth hormone receptor (hGHR) falls between the cracks of conventional high-resolution structural biology methods. Here, we study the structure of the full-length hGHR in nanodiscs with small-angle x-ray scattering (SAXS) as the foundation. We develop an approach that combines SAXS, x-ray diffraction, and NMR spectroscopy data obtained on individual domains and integrate these through molecular dynamics simulations to interpret SAXS data on the full-length hGHR in nanodiscs. The hGHR domains reorient freely, resulting in a broad structural ensemble, emphasizing the need to take an ensemble view on signaling of relevance to disease states. The structure provides the first experimental model of any full-length cytokine receptor in a lipid membrane and exemplifies how integrating experimental data from several techniques computationally may access structures of membrane proteins with long, disordered regions, a widespread phenomenon in biology

    Tuning the critical gelation temperature of thermo-responsive diblock copolymer worm gels

    Get PDF
    Amphiphilic diblock copolymer nano-objects can be readily prepared using reversible addition–fragmentation chain transfer (RAFT) polymerization. For example, poly(glycerol monomethacrylate) (PGMA) chain transfer agents (CTA) can be chain-extended using 2-hydroxypropyl methacrylate (HPMA) via RAFT aqueous dispersion polymerization to form well-defined spheres, worms or vesicles at up to 25% solids. The worm morphology is of particular interest, since multiple inter-worm contacts lead to the formation of soft free-standing gels, which undergo reversible degelation on cooling to sub-ambient temperatures. However, the critical gelation temperature (CGT) for such thermo-responsive gels is ≤20 °C, which is relatively low for certain biomedical applications. In this work, a series of new amphiphilic diblock copolymers are prepared in which the core-forming block comprises a statistical mixture of HPMA and di(ethylene glycol) methyl ether methacrylate (DEGMA), which is a more hydrophilic monomer than HPMA. Statistical copolymerizations proceeded to high conversion and low polydispersities were achieved in all cases (Mw/Mn < 1.20). The resulting PGMA-P(HPMA-stat-DEGMA) diblock copolymers undergo polymerization-induced self-assembly at 10% w/w solids to form free-standing worm gels. SAXS studies indicate that reversible (de)gelation occurs below the CGT as a result of a worm-to-sphere transition, with further cooling to 5 °C affording weakly interacting copolymer chains with a mean aggregation number of approximately four. This corresponds to almost molecular dissolution of the copolymer spheres. The CGT can be readily tuned by varying the mean degree of polymerization and the DEGMA content of the core-forming statistical block. For example, a CGT of 31 °C was obtained for PGMA59-P(HPMA91-stat-DEGMA39). This is sufficiently close to physiological temperature (37 °C) to suggest that these new copolymer gels may offer biomedical applications as readily-sterilizable scaffolds for mammalian cells, since facile cell harvesting can be achieved after a single thermal cycle

    Thermo-responsive Diblock Copolymer Worm Gels in Non-polar Solvents

    Get PDF
    Benzyl methacrylate (BzMA) is polymerized using a poly(lauryl methacrylate) macromolecular chain transfer agent (PLMA macro-CTA) using reversible addition–fragmentation chain transfer (RAFT) polymerization at 70 °C in n-dodecane. This choice of solvent leads to an efficient dispersion polymerization, with polymerization-induced self-assembly (PISA) occurring via the growing PBzMA block to produce a range of PLMA–PBzMA diblock copolymer nano-objects, including spheres, worms, and vesicles. In the present study, particular attention is paid to the worm phase, which forms soft free-standing gels at 20 °C due to multiple inter-worm contacts. Such worm gels exhibit thermo-responsive behavior: heating above 50 °C causes degelation due to the onset of a worm-to-sphere transition. Degelation occurs because isotropic spheres interact with each other much less efficiently than the highly anisotropic worms. This worm-to-sphere thermal transition is essentially irreversible on heating a dilute solution (0.10% w/w) but is more or less reversible on heating a more concentrated dispersion (20% w/w). The relatively low volatility of n-dodecane facilitates variable-temperature rheological studies, which are consistent with eventual reconstitution of the worm phase on cooling to 20 °C. Variable-temperature 1H NMR studies conducted in d26-dodecane confirm partial solvation of the PBzMA block at elevated temperature: surface plasticization of the worm cores is invoked to account for the observed change in morphology, because this is sufficient to increase the copolymer curvature and hence induce a worm-to-sphere transition. Small-angle X-ray scattering and TEM are used to investigate the structural changes that occur during the worm-to-sphere-to-worm thermal cycle; experiments conducted at 1.0 and 5.0% w/w demonstrate the concentration-dependent (ir)reversibility of these morphological transitions

    Dithionite and sulfinate complexes from the reaction of SO2 with decamethylsamarocene

    No full text
    The reaction of [(η5-C5Me5)2Sm(THF)2] with SO2 resulted in four different products. The dimeric samarium complex [{(η5-C5Me5)2Sm(C5Me5SO2)}2] (1) crystallized from the reaction mixture first. The dithionite–sulfinate complex [{(η5-C5Me5)2Sm(S2O4)}2{(η5-C5Me5)Sm(C5Me5SO2)}2] (2), was obtained as the second major product after workup of the filtrate. Additionally, the dithionite complex [{(η5-C5Me5)2Sm}2(S2O4)] (3) and the sulfinate complex [{(η5-C5Me5)Sm}2(C5Me5SO2)4] (4) were isolated as minor products. All compounds were characterized by single crystal X-ray diffraction. As major reaction pathways, the reductive coupling of two SO2 molecules to form the dithionite anion S2O42− and the nucleophilic attack of one samarocene C5Me5 ligand on the sulfur atom of SO2 were observed

    Assembly of Capsids from Hepatitis B Virus Core Protein Progresses through Highly Populated Intermediates in the Presence and Absence of RNA

    Get PDF
    The genetic material of viruses is protected by protein shells that are assembled from a large number of subunits in a process that is efficient and robust. Many of the mechanistic details underpinning efficient assembly of virus capsids are still unknown. The assembly mechanism of hepatitis B capsids has been intensively researched using a truncated core protein lacking the C-terminal domain responsible for binding genomic RNA. To resolve the assembly intermediates of hepatitis B virus (HBV), we studied the formation of nucleocapsids and empty capsids from full-length hepatitis B core proteins, using time-resolved small-angle X-ray scattering. We developed a detailed structural model of the HBV capsid assembly process using a combination of analysis with multivariate curve resolution, structural modeling, and Bayesian ensemble inference. The detailed structural analysis supports an assembly pathway that proceeds through the formation of two highly populated intermediates, a trimer of dimers and a partially closed shell consisting of around 40 dimers. These intermediates are on-path, transient and efficiently convert into fully formed capsids. In the presence of an RNA oligo that binds specifically to the C-terminal domain the assembly proceeds via a similar mechanism to that in the absence of nucleic acids. Comparisons between truncated and full-length HBV capsid proteins reveal that the unstructured C-terminal domain has a significant impact on the assembly process and is required to obtain a more complete mechanistic understanding of HBV capsid formation. These results also illustrate how combining scattering information from different time-points during time-resolved experiments can be utilized to derive a structural model of protein self-assembly pathways

    Molecular Polyarsenides of the Rare-Earth Elements

    No full text
    Reduction of [Cp*Fe(eta(5)-As-5)] with [Cp-2 '' Sm(thf)]/(Cp '' = eta(5)-1,3-(tBu)(2)C5H3) under various conditions led to [(Cp-2 '' Sm)(mu,eta(4):eta(4)-As-4)(Cp*Fe)] and [(Cp-2 '' Sm)(2)As-7-(Cp*Fe)]. Both compounds are the first polyarsenides of the rare-earth metals. [(Cp-2 '' Sm)(mu,eta(4) :eta(4)-As-4)(Cp*Fe)] is also the first d/f-triple decker sandwich complex with a purely inorganic planar middle deck. The central As-4(2-) unit is isolobal with the 6p-aromatic cyclobutadiene dianion (CH)(4)(2-). [(Cp-2 '' Sm)(2)As-7(Cp*Fe)] contains an As-7(3-) cage, which has a norbornadiene-like structure with two short As-As bonds in the scaffold. DFT calculations confirm all the structural observations. The As-As bond order inside the cyclo As-4 ligand in [(Cp-2 '' Sm)(mu,eta(4) :eta(4)-As-4)(Cp*Fe)] was estimated to be in between an As-As single bond and a formally aromatic As-4(2-) system

    Properdin oligomers adopt rigid extended conformations supporting function

    No full text
    Properdin stabilizes convertases formed upon activation of the complement cascade within the immune system. The biological activity of properdin depends on the oligomerization state, but whether properdin oligomers are rigid and how their structure links to function remains unknown. We show by combining electron microscopy and solution scattering, that properdin oligomers adopt extended rigid and well-defined conformations that are well approximated by single models of apparent n-fold rotational symmetry with dimensions of 230-360 Å. Properdin monomers are pretzel shaped molecules with limited flexibility. In solution, properdin dimers are curved molecules whereas trimers and tetramers are close to being planar molecules. Structural analysis indicates that simultaneous binding through all binding sites to surface linked convertases is unlikely for properdin trimer and tetramers. We show that multivalency alone is insufficient for full activity in a cell lysis assay. Hence, the observed rigid extended oligomer structure is an integral component of properdin function
    corecore