120 research outputs found

    Critical point network for drainage between rough surfaces

    Get PDF
    In this paper, we present a network method for computing two-phase flows between two rough surfaces with significant contact areas. Low-capillary number drainage is investigated here since one-phase flows have been previously investigated in other contributions. An invasion percolation algorithm is presented for modeling slow displacement of a wetting fluid by a non wetting one between two rough surfaces. Short-correlated Gaussian process is used to model random rough surfaces.The algorithm is based on a network description of the fracture aperture field. The network is constructed from the identification of critical points (saddles and maxima) of the aperture field. The invasion potential is determined from examining drainage process in a flat mini-channel. A direct comparison between numerical prediction and experimental visualizations on an identical geometry has been performed for one realization of an artificial fracture with a moderate fractional contact area of about 0.3. A good agreement is found between predictions and observations

    New Evidence on Variations of Human Body Burden of Methylmercury from Fish Consumption

    Get PDF
    Epidemiologic studies commonly use mercury (Hg) level in hair as a valid proxy to estimate human exposure to methylmercury (MeHg) through fish consumption. This study presents the results yielded by a complete data set on fish consumption habits, Hg levels in edible fish resources, and corresponding Hg accumulation in hair, gathered in three distinct communities of eastern Canada. For one of these communities, the average hair Hg concentration was 14 times less than the expected value based on calculated daily oral exposure and current knowledge of MeHg metabolism. This finding could be explained by differences in specific genetic characteristics and/or interactive effects of other dietary components

    Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems

    Get PDF
    The Arctic is a water-rich region, with freshwater systems covering about 16 % of the northern permafrost landscape. Permafrost thaw creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic (still) and lotic (moving) systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost) and deepening of the active layer (the surface soil layer that thaws and refreezes each year). Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying factors determine (i) the degree to which permafrost thaw manifests as thermokarst, (ii) whether thermokarst leads to slumping or the formation of thermokarst lakes, and (iii) the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying factors determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted lakes and streams is also likely to change; these systems have unique microbiological communities, and show differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter, and nutrient delivery. The degree to which thaw enables the delivery of dissolved vs. particulate organic matter, coupled with the composition of that organic matter and the morphology and stratification characteristics of recipient systems will play an important role in determining the balance between the release of organic matter as greenhouse gases (CO2and CH4), its burial in sediments, and its loss downstream. The magnitude of thaw impacts on northern aquatic ecosystems is increasing, as is the prevalence of thaw-impacted lakes and streams. There is therefore an urgent need to quantify how permafrost thaw is affecting aquatic ecosystems across diverse Arctic landscapes, and the implications of this change for further climate warming.Additional co-authors: G. MacMillan, M. Rautio, K. M. Walter Anthony, and K. P. Wicklan

    Lipopolysaccharides Impair Insulin Gene Expression in Isolated Islets of Langerhans via Toll-Like Receptor-4 and NF-κB Signalling

    Get PDF
    BACKGROUND:Type 2 diabetes is characterized by pancreatic β-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that the signalling cascade activated by lipopolysaccharides (LPS) binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. In this study, we tested the hypothesis that LPS alters insulin gene expression via TLR4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in islets. METHODOLOGY/PRINCIPAL FINDINGS:A 24-h exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of pancreas-duodenum homebox-1 (PDX-1) and mammalian homologue of avian MafA/l-Maf (MafA). Accordingly, LPS exposure also decreased glucose-induced insulin secretion. LPS repression of insulin, PDX-1 and MafA expression, as well as its inhibition of insulin secretion, were not observed in islets from TLR4-deficient mice. LPS inhibition of β-cell gene expression in rat islets was prevented by inhibition of the NF-κB pathway, but not the p38 mitogen-activated protein kinase (p38 MAPK) pathway. CONCLUSIONS/SIGNIFICANCE:Our findings demonstrate that LPS inhibit β-cell gene expression in a TLR4-dependent manner and via NF-κB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function

    High methylmercury in Arctic and subarctic ponds is related to nutrient levels in the warming eastern Canadian Arctic

    Get PDF
    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L−1). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3−2.2 ng L−1) than polygonal ponds (0.1−0.3 ng L−1) or lakes (<0.1 ng L−1). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1−3.1 ng L−1). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems

    The Water Bugs (Heteroptera: Nepomorpha) of the Guyana Region

    Full text link
    NEPOMORPHA OF THE GUYANA REGION The Nepomorpha of the Guyana Region are keyed out and described. In addition distributional, faunistical and comparative notes on the species are given. New species and subspecies: Ochterus aeneifrons surinamensis, O. tenebrosus; Limnocoris fittkaui surinamensis; Ranatra adelomorpha; Neoplea globoidea; Buenoa amnigenopsis; Tenagobia pseudoromani from Suriname and Ranatra ornitheia from Guyana. New synonyms (junior ones between parenthesis): Gelaslocorus flavus flavus Guér. (G. nebulosus nebulosus Guér.); Pelocoris impicticollis Stål (P. horváthi Mont.), P. poeyi (Guér.) not identical with P. femoratus (P.-B.) (P. convexus Nieser), P. procurrens White (P. minutus Mont.); Belostoma bicavum Lauck ( B. parvoculum Lauck); Ranatra doesburgi De Carlo (R. usingeri De C.), R. macrophthalma H.-S. (R. surinamensis De C.), R. mediana Mont. (R. williamsi Kuitert), R. obscura Mont. (R. annulipes White 1879 not Stål), R. sarmentoi De C. (R. ameghinoi De C.); Buenoa amnigenopsis n. sp. ( B. amnigenus Nieser 1968, 1970 not White), B. amnigenus (White) (B. amnigenoidea Nieser 1970), B. nitida Truxal (B. doesburgi Nieser); Heterocorixa surinamensis Nieser ( H. boliviensis Nieser 1970 not Hungerford); Tenagobia incerta Lundbl. ( T. signata and T. serrata in part, Nieser 1970 not White and Deay respectively), T. socialis (White) (T. serrata in part, Nieser 1970 not Deay)
    corecore