229 research outputs found

    Establishment of long-term ostracod epidermal culture

    Get PDF
    Primary crustacean cell culture was introduced in the 1960s, but to date limited cell lines have been established. Skogsbergia lerneri is a myodocopid ostracod, which has a body enclosed within a thin, durable, transparent bivalved carapace, through which the eye can see. The epidermal layer lines the inner surface of the carapace and is responsible for carapace synthesis. The purpose of the present study was to develop an in vitro epidermal tissue and cell culture method for S. lerneri. First, an optimal environment for the viability of this epidermal tissue was ascertained, while maintaining its cell proliferative capacity. Next, a microdissection technique to remove the epidermal layer for explant culture was established and finally, a cell dissociation method for epidermal cell culture was determined. Maintenance of sterility, cell viability and proliferation were key throughout these processes. This novel approach for viable S. lerneri epidermal tissue and cell culture augments our understanding of crustacean cell biology and the complex biosynthesis of the ostracod carapace. In addition, these techniques have great potential in the fields of biomaterial manufacture, the military and fisheries, for example, in vitro toxicity testing

    The ultrastructural development and 3D reconstruction of the transparent carapace of the ostracod Skogsbergia lerneri

    Get PDF
    The Skogsbergia lerneri is a marine ostracod which possesses a carapace that is both protective and transparent. Since development of this carapace and how it is maintained in the adult is not known, the aim of this investigation was to carry out an in-depth ultrastructural study of the ostracod carapace at different developmental stages. Standard transmission electron microscopy and novel serial block face scanning electron microscopy (SBF-SEM) were undertaken to discern carapace ultrastructure in both two and three dimensions. Analysis revealed a carapace consisting of the same basic layer structure as other myodocopid ostracods, namely an epicuticle, exocuticle, endocuticle and membranous layer, but with a thinner adult carapace of mean thickness of 19.2 ± 1.78 µm, n = 5. The carapace layers, except for instar 1 ostracods, had similar relative proportions throughout development. The endocuticle and membranous layer thickened through advancing developmental stages due to an increase in calcified crystalline polyhedrons and a greater number of chitinous lamellae in the membranous layer. Crystalline polyhedron dimensions were significantly smaller near the boundary with the membranous layer. The borders between the carapace layers were indistinct; SBF-SEM revealed an abundance of epicuticle projections into the exocuticle and apparent gradual merging at the boundary of the exocuticle and the endocuticle. Here, we discuss how the S. lerneri carapace layer structure has evolved to serve a specific mechanical function, allowing surface protection and rigidity. In addition, we suggest that the lack of pigment and graduated layer boundaries contribute to the transparency of the carapace

    Quantifying biomarkers of axonal degeneration in early glaucoma to find the disc at risk

    Get PDF
    Abstract: To evaluate regional axonal-related parameters as a function of disease stage in primary open angle glaucoma (POAG) and visual field (VF) sensitivity. Spectral domain optical coherence tomography was used to acquire 20° scans of POAG (n = 117) or healthy control (n = 52) human optic nerve heads (ONHs). Region specific and mean nerve fibre layer (NFL) thicknesses, border NFL and peripapillary NFL, minimum rim width (MRW)/ area (MRA) and prelamina thickness; and volume were compared across POAG disease stages and with visual field sensitivity. Differences identified between early glaucoma (EG), preperimetric glaucoma (PG) and control (C) ONHs included thinner PG prelamina regions than in controls (p < 0.05). Mean border NFL was thinner in EG (p < 0.001) and PG (p = 0.049) compared to control eyes; and EG mean, and inferior and ST, border NFL was thinner than in PG (p < 0.01). Mean, superior and inferior PG peripapillary NFL were thinner than in controls (p < 0.05), and EG ST peripapillary NFL was thinner than in PG (p = 0.023). MRW differences included: PG SN and inferior less than in controls (p < 0.05); thinner EG mean regional, inferior, nasal, and ST MRW versus PG MRW (p < 0.05). Regional border NFL, peripapillary NFL, MRW, MRA, prelamina thickness (except centre, p = 0.127) and prelamina volume (p < 0.05) were significantly associated with VF mean deviation (MD). Novel axon-derived indices hold potential as biomarkers to detect early glaucoma and identify ONHs at risk

    Characterisation of carapace composition in developing and adult ostracods (Skogsbergia lerneri) and its potential for biomaterials

    Get PDF
    The protective carapace of Skogsbergia lerneri, a marine ostracod, is scratch-resistant and transparent. The compositional and structural organisation of the carapace that underlies these properties is unknown. In this study, we aimed to quantify and determine the distribution of chemical elements and chitin within the carapace of adult ostracods, as well as at different stages of ostracod development, to gain insight into its composition. Elemental analyses included X-ray absorption near-edge structure, X-ray fluorescence and X-ray diffraction. Nonlinear microscopy and spectral imaging were performed to determine chitin distribution within the carapace. High levels of calcium (20.3%) and substantial levels of magnesium (1.89%) were identified throughout development. Amorphous calcium carbonate (ACC) was detected in carapaces of all developmental stages, with the polymorph, aragonite, identified in A-1 and adult carapaces. Novel chitin-derived second harmonic generation signals (430/5 nm) were detected. Quantification of relative chitin content within the developing and adult carapaces identified negligible differences in chitin content between developmental stages and adult carapaces, except for the lower chitin contribution in A-2 (66.8 ± 7.6%) compared to A-5 (85.5 ± 10%) (p = 0.03). Skogsbergia lerneri carapace calcium carbonate composition was distinct to other myodocopid ostracods. These calcium polymorphs and ACC are described in other biological transparent materials, and with the consistent chitin distribution throughout S. lerneri development, may imply a biological adaptation to preserve carapace physical properties. Realisation of S. lerneri carapace synthesis and structural organisation will enable exploitation to manufacture biomaterials and biomimetics with huge potential in industrial and military applications

    Structural, thermal and dissolution properties of MgO- and CaO-containing borophosphate glasses: effect of Fe2O3 addition

    Get PDF
    This paper investigated manufacture of high-durability phosphate glass fibres for biomedical applications. Five different borophosphate glass formulations in the systems of 45P2O5–5B2O3–5Na2O–(29 − x)CaO–16MgO–(x)Fe2O3 and 45P2O5–5B2O3–5Na2O–24CaO–(21 − x)MgO–(x)Fe2O3 where x = 5, 8 and 11 mol% were produced via melt quenching. The compositions and amorphous nature of the glasses were confirmed by ICP-MS and XRD, respectively. FTIR results indicated depolymerisation of the phosphate chains with a decrease in Q2 units with increasing Fe2O3 content. DSC analyses showed an increase in Tg by ~5 °C with an increment of 3 mol% in Fe2O3 content. The thermal properties were also used to calculate processing window (i.e. Tc,ons—Tg) and another parameter, Kgl, to determine the suitability for fibre drawing directly from melt, which equals (Tc,ons—Tg)/(Tl—Tc,ons). The degradation study conducted in PBS solution at 37 °C showed a decrease of 25–47% in degradation rate with increasing Fe2O3 content. This confirmed that the chemical durability of the glasses had increased, which was suggested to be due to Fe2O3 addition. Furthermore, the density measured via Archimedes method revealed a linear increase with increasing Fe2O3 content

    Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR

    Get PDF
    Chimeric antigen receptor (CAR)-modified T cells targeting CD19 demonstrate unparalleled responses in relapsed/refractory acute lymphoblastic leukemia (ALL)1,2,3,4,5, but toxicity, including cytokine-release syndrome (CRS) and neurotoxicity, limits broader application. Moreover, 40–60% of patients relapse owing to poor CAR T cell persistence or emergence of CD19− clones. Some factors, including the choice of single-chain spacer6 and extracellular7 and costimulatory domains8, have a profound effect on CAR T cell function and persistence. However, little is known about the impact of CAR binding affinity. There is evidence of a ceiling above which increased immunoreceptor affinity may adversely affect T cell responses9,10,11. We generated a novel CD19 CAR (CAT) with a lower affinity than FMC63, the high-affinity binder used in many clinical studies1,2,3,4. CAT CAR T cells showed increased proliferation and cytotoxicity in vitro and had enhanced proliferative and in vivo antitumor activity compared with FMC63 CAR T cells. In a clinical study (CARPALL, NCT02443831), 12/14 patients with relapsed/refractory pediatric B cell acute lymphoblastic leukemia treated with CAT CAR T cells achieved molecular remission. Persistence was demonstrated in 11 of 14 patients at last follow-up, with enhanced CAR T cell expansion compared with published data. Toxicity was low, with no severe CRS. One-year overall and event-free survival were 63% and 46%, respectivel

    Habitat quality, configuration and context effects on roe deer fecundity across a forested landscape mosaic

    Get PDF
    Effective landscape-scale management of source-sink deer populations will be strengthened by understanding whether local variation in habitat quality drives heterogeneity in productivity. We related female roe deer Capreolus capreolus fecundity and body mass to habitat composition and landscape context, separately for adults and yearlings, using multi-model inference (MMI) applied to a large sample of individuals (yearlings: fecundity=202, body mass=395; adults: fecundity=908, body mass=1669) culled during 2002-2015 from an extensive (195 km2) heterogeneous forest landscape. Adults were heavier (inter-quartile, IQ, effect size=+0.5kg) when culled in buffers comprising more arable lands while contrary to our prediction no effects on body mass of grassland, young forest or access to vegetation on calcareous soil were found. Heavier adults were more fertile (IQ effect size, +12% probability of having two embryos instead of one or zero). Counter-intuitively, adults with greater access to arable lands were less fecund (IQ effect of arable: -7% probability of having two embryos, instead of one or zero), and even accounting for greater body mass of adults with access to arable, their modelled fecundity was similar to or lower than that of adults in the forest interior. In contrast, effects of grassland, young forest and calcareous soil did not receive support. Yearling body mass had an effect on fecundity twice that found in adults (+23% probability of having one additional embryo), but yearling body mass and fecundity were not affected by any candidate habitat or landscape variables. Effect of arable lands on body mass and fecundity were small, with little variance explained (Coefficient of Variation of predicted fecundity across forest sub-regions=0.03 for adults). More variance in fecundity was attributed to other differences between forest management sub-regions (modelled as random effects), suggesting other factors might be important. When analysing source-sink population dynamics to support management, an average value of fecundity can be appropriate across a heterogeneous forest landscape
    • …
    corecore