6,626 research outputs found

    Oxidative Effects of Lead in Young and Adult Fisher 344 Rats

    Get PDF
    Abstract. Lead poisoning has been extensively studied over the years. Many adverse physiological and behavioral impacts on the human body have been reported due to the entry of this heavy metal. It especially affects the neural development of children. The current study investigates the effect of lead exposure in young (1.5 months) and adult (10 months) male Fisher 344 rats. Five weeks of lead administration resulted in a profound change in the lead levels in the red blood cells (RBCs) of the young lead-exposed group (37.0 � 4.47 �g/dl) compared to the control (�1 �g/dl) and adult (27.4 � 8.38 �g/dl) lead-exposed groups. Therefore, this study confirms the fact that gastrointestinal absorption of lead in young is greater than that of adults. Furthermore, glutathione and glutathione disulfide (GSSG) levels in RBCs, liver, and brain tissues were measured to determine thiol status; malondialdehyde (MDA

    Nano dust impacts on spacecraft and boom antenna charging

    Full text link
    High rate sampling detectors measuring the potential difference between the main body and boom antennas of interplanetary spacecraft have been shown to be efficient means to measure the voltage pulses induced by nano dust impacts on the spacecraft body itself (see Meyer-Vernet et al, Solar Phys. 256, 463 (2009)). However, rough estimates of the free charge liberated in post impact expanding plasma cloud indicate that the cloud's own internal electrostatic field is too weak to account for measured pulses as the ones from the TDS instrument on the STEREO spacecraft frequently exceeding 0.1 V/m. In this paper we argue that the detected pulses are not a direct measure of the potential structure of the plasma cloud, but are rather the consequence of a transitional interruption of the photoelectron return current towards the portion of the antenna located within the expanding cloud

    On the Sensitivity of 3-D Thermal Convection Codes to Numerical Discretization: A Model Intercomparison

    Get PDF
    Fully 3-D numerical simulations of thermal convection in a spherical shell have become a standard for studying the dynamics of pattern formation and its stability under perturbations to various parameter values. The question arises as to how does the discretization of the governing equations affect the outcome and thus any physical interpretation. This work demonstrates the impact of numerical discretization on the observed patterns, the value at which symmetry is broken, and how stability and stationary behavior is dependent upon it. Motivated by numerical simulations of convection in the Earth\u27s mantle, we consider isoviscous Rayleigh-Bénard convection at infinite Prandtl number, where the aspect ratio between the inner and outer shell is 0.55. We show that the subtleties involved in development mantle convection models are considerably more delicate than has been previously appreciated, due to the rich dynamical behavior of the system. Two codes with different numerical discretization schemes: an established, community-developed, and benchmarked finite element code (CitcomS) and a novel spectral method that combines Chebyshev polynomials with radial basis functions (RBF) are compared. A full numerical study is investigated for the following three cases. The first case is based on the cubic (or octahedral) initial condition (spherical harmonics of degree ℓ =4). How variations in the behavior of the cubic pattern to perturbations in the initial condition and Rayleigh number between the two numerical discrezations is studied. The second case investigates the stability of the dodecahedral (or icosahedral) initial condition (spherical harmonics of degree ℓ = 6). Although both methods converge first to the same pattern, this structure is ultimately unstable and systematically degenerates to cubic or tetrahedral symmetries, depending on the code used. Lastly, a new steady state pattern is presented as a combination of order 3 and 4 spherical harmonics leading to a five cell or a hexahedral pattern and stable up to 70 times the critical Rayleigh number. This pattern can provide the basis for a new accuracy benchmark for 3-D spherical mantle convection codes

    Collective transport in bilayer quantum Hall systems

    Full text link
    Filling factor ν=1\nu=1 incompressible states in ideal bilayer quantum Hall systems have spontaneous interlayer phase coherence and can be regarded either as easy-plane pseudospin ferromagnets or as condensates of excitons formed from electrons in one layer and holes in the other layer. In this paper we discuss efforts to achieve an understanding of the two different types of transport measurements (which we refer to as drag and tunneling experiments respectively) that have been carried out in bilayer quantum Hall systems by the group of Jim Eisenstein at the California Institute of Technology. In a drag experiment, current is sent through one of the two-layers and the voltage drop is measured in the other layer. We will argue that the finding of these experiments that the voltage drop in the drag layer is different from that in the the drive layer, is an experimental proof that these bilayers do not have quasi-long-range excitonic order. The property that at ν=1\nu=1 the longitudinal drag voltage increases from near zero when spontaneous coherence is initially established, then falls back toward zero as it becomes well established, can be explained as a competition between the broken symmetry and the gap to which it gives rise. In the tunneling experiment, current is injected in one layer and removed from the other layer. The absence of quasi-long-range order likely explains the relatively small tunneling conductance per area found in the these measurements.Comment: 6 pages, 3 figures, EP2DS-03 Conference Proceeding

    Stability of the Excitonic Phase in Bilayer Quantum Hall Systems at Total Filling One -- Effects of Finite Well Width and Pseudopotentials --

    Full text link
    The ground state of a bilayer quantum Hall system at νT=1\nu_{\rm T}=1 with model pseudopotential is investigated by the DMRG method. Firstly, pseudopotential parameters appropriate for the system with finite layer thickness are derived, and it is found that the finite thickness makes the excitonic phase more stable. Secondly, a model, where only a few pseudopotentials with small relative angular momentum have finite values, is studied, and it is clarified how the excitonic phase is destroyed as intra-layer pseudopotential becomes larger. The importance of the intra-layer repulsive interaction at distance twice of the magnetic length for the destruction of the excitonic phase is found.Comment: 7 pages, 7 figure

    Swift Observations of Hard X-ray Emitting White Dwarfs in Symbiotic Stars

    Full text link
    The X-ray emission from most accreting white dwarfs (WDs) in symbiotic binary stars is quite soft. Several symbiotic WDs, however, produce strong X-ray emission at energies greater than ~20 keV. The Swift BAT instrument has detected hard X-ray emission from 4 such accreting WDs in symbiotic stars: RT Cru, T CrB, CD -57 3057, and CH Cyg. In one case (RT Cru), Swift detected X-rays out to greater than 50 keV at a > 5 sigma confidence level. Combining data from the XRT and BAT detectors, we find that the 0.3-150 keV spectra of RT Cru, T CrB, and CD -57 3057 are well described by emission from a single-temperature, optically thin thermal plasma, plus an unresolved 6.4-6.9 keV Fe line complex. The X-ray spectrum of CH Cyg contains an additional bright soft component. For all 4 systems, the spectra suffer high levels of absorption from material that both fully and partially covers the source of hard X-rays. The XRT data did not show any of the rapid, periodic variations that one would expect if the X-ray emission were due to accretion onto a rotating, highly magnetized WD. The X-rays were thus more likely from the accretion-disk boundary layer around a massive, non-magnetic WD in each binary. The X-ray emission from RT Cru varied on timescales of a few days. This variability is consistent with being due to changes in the absorber that partially covers the source, suggesting localized absorption from a clumpy medium moving into the line of sight. The X-ray emission from CD -57 3057 and T CrB also varied during the 9 months of Swift observations, in a manner that was also consistent with variable absorption.Comment: Accepted for publication in ApJ. 9 pages, 6 figure

    Magnetic Surfaces in Stationary Axisymmetric General Relativity

    Full text link
    In this paper a new method is derived for constructing electromagnetic surface sources for stationary axisymmetric electrovac spacetimes endowed with non-smooth or even discontinuous Ernst potentials. This can be viewed as a generalization of some classical potential theory results, since lack of continuity of the potential is related to dipole density and lack of smoothness, to monopole density. In particular this approach is useful for constructing the dipole source for the magnetic field. This formalism involves solving a linear elliptic differential equation with boundary conditions at infinity. As an example, two different models of surface densities for the Kerr-Newman electrovac spacetime are derived.Comment: 15 page

    Integral Equations for Heat Kernel in Compound Media

    Full text link
    By making use of the potentials of the heat conduction equation the integral equations are derived which determine the heat kernel for the Laplace operator a2Δ-a^2\Delta in the case of compound media. In each of the media the parameter a2a^2 acquires a certain constant value. At the interface of the media the conditions are imposed which demand the continuity of the `temperature' and the `heat flows'. The integration in the equations is spread out only over the interface of the media. As a result the dimension of the initial problem is reduced by 1. The perturbation series for the integral equations derived are nothing else as the multiple scattering expansions for the relevant heat kernels. Thus a rigorous derivation of these expansions is given. In the one dimensional case the integral equations at hand are solved explicitly (Abel equations) and the exact expressions for the regarding heat kernels are obtained for diverse matching conditions. Derivation of the asymptotic expansion of the integrated heat kernel for a compound media is considered by making use of the perturbation series for the integral equations obtained. The method proposed is also applicable to the configurations when the same medium is divided, by a smooth compact surface, into internal and external regions, or when only the region inside (or outside) this surface is considered with appropriate boundary conditions.Comment: 26 pages, no figures, no tables, REVTeX4; two items are added into the Reference List; a new section is added, a version that will be published in J. Math. Phy

    Quasiparticles in the 111 state and its compressible ancestors

    Full text link
    We investigate the relationship of the spontaneously inter-layer coherent ``111''state of quantum Hall bilayers at total filling factor \nu=1 to ``mutual'' composite fermions, in which vortices in one layer are bound to electrons in the other. Pairing of the mutual composite fermions leads to the low-energy properties of the 111 state, as we explicitly demonstrate using field-theoretic techniques. Interpreting this relationship as a mechanism for inter-layer coherence leads naturally to two candidate states with non-quantized Hall conductance: the mutual composite Fermi liquid, and an inter-layer coherent charge e Wigner crystal. The experimental behavior of the interlayer tunneling conductance and resistivity tensors are discussed for these states.Comment: 4 Pages, RevTe

    Diffusion of Pt dimers on Pt(111)

    Full text link
    We report the results of a density-functional study of the diffusion of Pt dimers on the (111) surface of Pt. The calculated activation energy of 0.37 eV is in {\em exact} agreement with the recent experiment of Kyuno {\em et al.} \protect{[}Surf. Sci. {\bf 397}, 191 (1998)\protect{]}. Our calculations establish that the dimers are mobile at temperatures of interest for adatom diffusion, and thus contribute to mass transport. They also indicate that the diffusion path for dimers consists of a sequence of one-atom and (concerted) two-atom jumps.Comment: Pour pages postscript formatted, including one figure; submitted to Physical Review B; other papers of interest can be found at url http://www.centrcn.umontreal.ca/~lewi
    corecore