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Abstract

Fully 3-D numerical simulations of thermal convection in a spherical shell have be-
come a standard for studying the dynamics of pattern formation and its stability un-
der perturbations to various parameter values. The question arises as to how does
the discretization of the governing equations affect the outcome and thus any phys-5

ical interpretation. This work demonstrates the impact of numerical discretization on
the observed patterns, the value at which symmetry is broken, and how stability and
stationary behavior is dependent upon it. Motivated by numerical simulations of con-
vection in the Earth’s mantle, we consider isoviscous Rayleigh-Bénard convection at
infinite Prandtl number, where the aspect ratio between the inner and outer shell is10

0.55. We show that the subtleties involved in development mantle convection mod-
els are considerably more delicate than has been previously appreciated, due to the
rich dynamical behavior of the system. Two codes with different numerical discretiza-
tion schemes: an established, community-developed, and benchmarked finite element
code (CitcomS) and a novel spectral method that combines Chebyshev polynomials15

with radial basis functions (RBF) are compared. A full numerical study is investigated
for the following three cases. The first case is based on the cubic (or octahedral) initial
condition (spherical harmonics of degree ` = 4). How variations in the behavior of the
cubic pattern to perturbations in the initial condition and Rayleigh number between the
two numerical discrezations is studied. The second case investigates the stability of the20

dodecahedral (or icosahedral) initial condition (spherical harmonics of degree ` = 6).
Although both methods converge first to the same pattern, this structure is ultimately
unstable and systematically degenerates to cubic or tetrahedral symmetries, depend-
ing on the code used. Lastly, a new steady state pattern is presented as a combination
of order 3 and 4 spherical harmonics leading to a five cell or a hexahedral pattern and25

stable up to 70 times the critical Rayleigh number. This pattern can provide the basis
for a new accuracy benchmark for 3-D spherical mantle convection codes.
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1 Introduction

For 3-D Rayleigh-Bénard convection in a spherical shell at infinite Prandtl number, ana-
lytical studies by Busse (1975); Busse and Riahi (1988, 1982), using weakly nonlinear
perturbation theory, predicted a set of solutions that exhibited steady-state polyhedral
pattern formations that would also persist into stronger nonlinear regimes. Later, these5

solutions were numerically verified by Bercovici et al. (1989, 1991); Ratcliff and Schu-
bert (1996); Machetel et al. (1986) for up to 100 times the critical Rayleigh number
(Ra = 712) (such as the cubic symmetry test case – which forms the corner structure
of an octahedron). Some studies, as Bercovici et al. (1991), have questioned the prop-
erties of these steady-state solutions by considering the influence of the non-dominant10

spherical harmonic modes on modifying boundary layer thickness as the Rayleigh num-
ber increased. However, the stability of these polyhedral patterns to perturbations in
the initial conditions, i.e. the dominant spherical harmonic modes that actually define
them remains unclear. Nor has the dynamical behavior of steady-state solutions with
higher orders of polyhedral symmetry predicted by Busse (1975) (e.g. dodecahedral15

symmetry) been examined. From a computational standpoint, each numerical scheme
will handle unstable steady-states, non-uniqueness in the solution, and bifurcations
differently, depending on how the continuous eigenvalue spectrum has been discretely
represented when linearized about the steady state.

In this light, the goal of this paper is to illustrate the subtleties involved in the devel-20

opment of numerical mantle convection models are considerably more delicate than
has been previously appreciated, due to the rich dynamical behavior of the system.
For fully nonlinear large-scale systems with millions of unknowns, as considered in
this paper, using classical eigenvalue stability analysis to understand the influence of
numerical discretization is not an option as (1) the analytical solution and thus the25

continuous eigenvalue spectrum is not available and (2) calculating the eigenvalues
for such systems is computationally not feasible. Although recent advancements have
been made in developing iterative schemes to detect Hopf bifurcations in large-scale
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systems (Meerbergen and Spence, 2010; Elman et al., 2012), the following study ex-
hibits a much richer pattern of dynamical instability and transitional behavior, leading
to a variety of end-states. Therefore, we will perform an intensive computational inves-
tigation of the stationary behavior and stability of three different types of symmetries
to perturbations on the initial condition and as a function of Ra, observing how both5

transitional and end states are strongly dependent on numerical discretization.
The numerical studies are done using two state-of-the-art models, CitcomS-3.1.1

(http://www.geodynamics.org/cig/software/citcoms) and a pseudospectral radial basis
function-Chebyshev model (Wright et al., 2010) (RBF-PS), with the former funded on
a ongoing basis by the USA National Science Foundation. Section 2 provides an10

overview of the system of PDEs to be solved and the computational methods used.
Section 3 numerically studies the sensitivity of the steady state solution to perturba-
tions in the cubic initial condition for both low and higher Ra number. Section 4 explores
the stability regimes of a higher order initial spherical symmetry, studying the transition
between steady states as a function of Ra. Section 5 introduces a new initial condition15

mode, leading to the observation of a novel steady state pattern and future benchmark
for assessing model performance.

2 Governing equations and computational models

The governing equations describe a Boussinesq fluid at infinite Prandtl number in a 3-D
spherical shell that is heated from below and cooled from above:20

∇ ·u = 0 (continuity), (1)

∇ ·
[
η
(
∇u+ {∇u}T

)]
+RaT r̂ = ∇p (momentum), (2)

∂T
∂t

+u · ∇T = ∇2T (energy), (3)
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where u = (ur ,uθ,uλ) is the velocity field in spherical coordinates (θ = latitude,
λ = longitude), p is pressure, T is temperature, r̂ is the unit vector in the radial di-
rection, η is the viscosity, and Ra is the Rayleigh number defined below. The boundary
conditions on the fluid velocity at the inner and outer surfaces of the spherical shell are:

ur |r=Ri,Ro
= 0︸ ︷︷ ︸

impermeable

and (4)5

r
∂
∂r

(
uθ

r

)∣∣∣∣
r=Ri,Ro

= r
∂
∂r

(
uλ

r

)∣∣∣∣
r=Ri,Ro

= 0︸ ︷︷ ︸
shear-stress free

, (5)

where Ri = 11/9, the radius of the inner surface of the 3-D spherical shell and
Ro = 20/9 is the radius of the outer surface as measured from r = 0. The boundary
conditions on the temperature are:10

T (Ri,θ,λ) = 1 and T (Ro,θ,λ) = 0.

Equations (1)–(3) are non-dimensionalized with the length scale chosen as the approx-
imate thickness of the mantle, ∆R = Ro −Ri = 1, the time-scale chosen as the thermal
diffusion time of mantle minerals, t = (∆R)2/κ (noting a non-dimensional time t = 1,15

corresponds to 265 billion years, i.e. 58 times the age of the Earth), and the temper-
ature scale chosen as the difference between the temperature at the inner and outer
boundaries, ∆T = 1. The fluid is treated as isoviscous, η = constant. Thus, the dynam-
ics of the fluid are governed entirely by the Ra, which can be interpreted as a ratio of
the destabilizing force due to the buoyancy of the heated fluid to the stabilizing force20

due to the viscosity of the fluid and heat transfer by conduction.
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The initial condition for the temperature is specified as

T (r ,θ,λ) =
Ri(r −Ro)

r(Ri −Ro)
+0.01TP (θ,λ)sin

(
π

r −Ri

Ro −Ri

)
, (6)

with TP (θ,λ) =

Y m=0
` (θ,λ)︸ ︷︷ ︸

axisymmetric

+ εY m6=0
` (θ,λ)︸ ︷︷ ︸

non-axisymmetric

 . (7)

The first term in Eq. (6) represents a purely conductive temperature profile, while the5

second term TP is a perturbation to this profile, determining the final patterns of polyhe-
dral symmetry. Y m

` denotes the normalized spherical harmonic of degree ` and order m
(Eq. 8) and the non-axisymmetric perturbation ε will play an important role in studying
transitional pattern formations in the cubic case.

Y m
` (θ,λ) =

√
(2` +1)(` −m)!

2π(1+δm0)(` +m)!
P m
` (cosθ)cos(mλ) (8)10

where P m
` are the (unnormalized) associated Legendre functions and δm0 is the Kro-

necker delta. It should be noted that the stability of preferred patterns in purely axisym-
metric convective flows has been studied by Zebib et al. (1980, 1983).

2.1 CitComS15

CitcomS is a second-order finite element code written in C. Its purpose is to explore
mantle convection problems in 3-D spherical geometry (Moresi and Solomatov, 1995;
Zhong et al., 2000; Tan et al., 2006). Developed from the software Citcom (Moresi et al.,
1996), a code structured for 3-D Cartesian geometry, CitcomS employs an Uzawa al-
gorithm to solve the momentum equation coupled with the incompressibility constraints20

(Ramage and Wathen, 1994). The energy equation is solved with a streamline upwind
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Petrov Galerkin method (Brooks, 1981). We used version 3.1.1 available from the Com-
putational Infrastructure for Geodynamics (http://www.geodynamics.org/cig/software/
citcoms).

The global mesh is obtained by first dividing the spherical shell into 12 caps of ap-
proximatively equal size. Then each cap is divided into N ×N elements in the angular5

directions and M elements in the vertical direction, forming a layered brick-like struc-
ture. For each 3-D element, eight velocity nodes with trilinear interpolation functions,
and one constant pressure node are used. Per cap, we will be using 48 elements in
each dimension, resulting in 12×48×48×48 total elements.

2.2 RBF-PS10

Here, an overview of the spectral RBF-PS model is given; for a detailed description of
the numerical method see (Wright et al., 2010). To spatially discretize the 3-D spherical
shell a “2(θ,λ)+1(r)” layered approach is used. In the radial direction, M+2 Chebyshev
nodes (corresponding to M interior points and 2 boundary points) and N “scattered”
nodes (e.g. see Womersley and Sloan, 2003/2007) are placed on each of the resulting15

M spherical surfaces. This gives a tensor product structure between the radial and lat-
eral directions, which allows the spatial operators to be computed in O(M2N)+O(MN2)
operations instead of O(M2N2). While all radial derivatives are discretized using Cheby-
shev polynomials, differential operators in the latitudinal direction θ and longitudinal
direction λ are approximated discretely on each spherical surface using RBFs. In20

a given limit RBFs reproduce spherical harmonics (Fornberg and Piret, 2007). How-
ever, they generally give higher accuracy than spherical harmonics for nonlinear sys-
tems of PDEs (Wright et al., 2010; Flyer and Wright, 2007, 2009; Flyer and Fornberg,
2011; Flyer et al., 2012) (for examples of how to implement RBFs on spherical sur-
faces see Flyer and Wright, 2007, 2009). For all cases in the paper, N = 4096 nodes25

are used on each sphere with M = 43 Chebyshev nodes used in the radial direction.
The time discretization of the energy equation uses a semi-implicit method. All terms
that involve radial derivatives are time-stepped with a Crank–Nicolson method, while
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terms involving latitudinal and longitudinal derivatives are time-stepped with a third-
order Adams–Bashforth method.

3 Stability of cubic steady state to perturbations in the initial condition at
varying Ra

The cubic initial condition temperature profile used in many 3-D spherical convection5

studies such as Ratcliff and Schubert (1996); Kameyama et al. (2008); Zhong et al.
(2000); Yoshida and Kageyama (2004); Stemmer et al. (2006); Choblet et al. (2007);
Zhong et al. (2008); Kameyama et al. (2008), is specified by letting Tp in Eq. (7) be
equal to

Tp(θ,λ) =

Y 0
4 (θ,λ)+

5
7

(1−δ)︸ ︷︷ ︸
ε

Y 4
4 (θ,λ)

 (9)10

with δ = 0. A perturbation parameter δ has been introduced to allow us to slowly per-
turb the amplitude of the non-axisymmetric mode. The θ− λ temperature dependence
of (9) on a spherical shell surface can be seen in Fig. 1a for δ = 0. As δ increases the
initial condition slowly tends to a pure Y 0

4 initial condition, with the amplitude of the four15

plumes along the equatorial region decreasing and progressively merging together as
seen in Fig. 1b for δ = 0.30. It should be noted here that δ = 0 does not correspond to
perfect cubic symmetry, but has however become the standard in modern geophysical
and astrophysical simulations as those cited above. Indeed, the maximum amplitude of
the plumes in Fig. 1a varies slightly between the poles and the equator. Perfect cubic20

symmetry, as predicted by Busse (1975), numerically discovered by Young (1974), with
early simulations by Machetel et al. (1986) and Bercovici et al. (1989), is obtained with

ε =
√

5
7 instead of 5

7 .
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In the next two subsections, we examine how transitions from the cubic steady-state
to axisymmetric patterns of lower order occur as a function of perturbing the non-
axisymmetric mode of the initial condition, and more interestingly how these transitions
differ depending on the numerical discretization of the governing equations.

3.1 Sensitivity to amplitude perturbations in the initial condition at low Ra5

At low Rayleigh number, 5000 ≤Ra≤ 10000, the cubic steady state pattern is stable
for both models up to δ = 0.30. That is, as long as the ratio of the spectral coefficients
between the Y 0

4 mode and the Y 4
4 mode does fall below 1/2, the cubic pattern is main-

tained. This can be seen in Fig. 2 that plots the isosurfaces of residual temperature
(see caption for further details as this is how 3-D convection will be illustrated in the10

paper) as a function of δ.
Incrementing δ by 0.01, the RBF-PS model displays a clear transition between

the cubic steady state and an order ` = 4 axisymmetric pattern. In contrast, CitcomS
converges to a transitional steady-state pattern for 0.31 ≤ δ ≤ 0.32, in which the four
plumes along the equator grow and merge together two by two, but the process is15

not completed. This is never observed with the RBF-PS discretization (see Fig. 2). At
higher values of δ, CitcomS and RBF-PS method converge to the same pattern. Thus,
at the parameter value of destabilization (δ = 0.30), the numerical discretization plays
an important role as to what pattern emerges. Also, the transition point at which the Y 0

4

spherical harmonic mode completely dominates and the Y 4
4 part of the initial condition20

no longer influences the final pattern of convection differs between the two models.
Figure 3 shows the evolution of the volume-averaged temperature (〈T 〉) for both mod-

els at Ra = 7000. As just discussed, the figure illustrates that CitcomS converges to 3
different steady-states, depending on the value of δ. In contrast, for δ > 0.30, the figure
shows that the RBF-PS solution is attracted to the ` = 4 axisymmetric mode. In either25

case, the solution, once destabilized, transitions to patterns characterized by a higher
〈T 〉.

2041

3.2 Sensitivity to amplitude perturbations in the initial condition at high Ra

As would be expected, at higher Ra, the cubic steady state is much more sensitive to
small perturbations in the initial condition. For Ra = 70000, the Y 4

4 mode of the initial
condition was very slowly perturbed in increments of δ = 5×10−3, as shown in Fig. 4.
The cubic steady state is destabilized at δ ≥ 0.065 for CitcomS and δ ≥ 0.070 for the5

RBF-PS method with different transitional patterns.
With CitcomS, the destabilization shows a transitional pattern between a cubic

steady state to an unsteady axisymmetric pattern at δ = 0.065 and δ = 0.007, char-
acterized by two diametrically opposed upwelling plumes in the equatorial region with
a great circle of downwelling that encompasses the polar regions. It develops by a two-10

by-two merging of upwelling plumes on the equator; initial upwelling plumes at the
poles are destabilized and migrate to the equatorial region. The end state for pertur-
bations of δ ≥ 0.75 is also an unsteady axisymmetric pattern. However, the pattern of
convection has been completely rearranged with upwelling now occurring at the polar
regions and downwelling at equatorial region, yielding a strong dominance of an oscil-15

lating ` = 2 mode. The quasi-uniform oscillation of this end state can be seen in the
time traces of the outer Nu and volume averaged RMS velocity in Fig. 5, where the
region for t ≥ 0.2 has been enlarged for better viewing.

With the RBF-PS model, the cubic steady state also eventually evolves to an un-
steady axisymmetric pattern for δ ≥ 0.085, similar to that of the CitcomS as shown in20

Fig. 4. However, the transition between these two states is very different than what
was observed with the CitcomS model. For δ = 0.07, the cubic pattern is only par-
tially destabilized. Two plumes on one side merge and begin to pulsate. Although this
structure is unsteady, it stays stable with no other changes in the general pattern of
convection observed. At 0.075 < δ ≤ 0.08), the cubic geometry is fully destabilized and25

the model begins to converge to the unsteady axisymmetric pattern.
For the two methods, the stability of the cubic symmetry pattern as a function of the

Rayleigh number and the amount of perturbation δ to the initial condition is summarized
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in Fig. 6. The amount of perturbation needed to destabilize the steady-state cubic sym-
metry pattern begins to decrease rapidly after Ra≈ 20000. The shaded blue and pink
regions depict where transition states are observed for the CitcomS model and RBF-
PS model respectively. Generally, the evolution of the transition is well defined using
both methods. CitcomS shows a transitional pattern for all Rayleigh numbers. A transi-5

tional pattern appears with RBF-PS only for Ra> 30000. In all cases, using RBF-PS,
the transition is not characterized by a single pattern, as in CitcomS, but by a progres-
sive transition as a function of the perturbation (δ). Surprisingly, this transitional regime
broadens for large Rayleigh numbers (see red shaded area with Ra≥ 50000), imply-
ing larger perturbations are required to fully diminish the influence of the ` = 4 modes.10

These results clearly demonstrate how numerical discretization impacts pattern forma-
tion and its interpretation in simulations of 3-D convective flow.

In Busse (1975), Busse predicts a steady-state higher-order convection pattern cor-
responding to dodecahedral symmetry. Here for the first time (to the authors’ knowl-
edge), the stability of this pattern for low Ra is studied, with surprising results on how15

the numerical discretization scheme severely affects the interpretation of steady-state
stability ranges. The initial condition is given by Eq. (6) with

TP (θ,λ) =

[
Y 0

6 (θ,λ)+

√
14
11

Y 5
6 (θ,λ)

]
. (10)

The θ− λ temperature dependence on a sphere is shown in Fig. 7. It has twelve ini-20

tial plumes of upwelling, forming the faces of a dodecahedron, where the strongest
downwelling (in dark blue) occurs at the vertices of the pentagons.

The evolution of convection with an dodecahedral initial condition at a Ra = 7000 is
presented in Fig. 8. Both methods converge first to a steady-state dodecahedral pat-
tern; however, this convection pattern is unstable. The symmetry is broken at different25

times for RBF-PS and CitcomS models. Plumes begin to merge after t = 0.7 with Cit-
comS, while for the RBF-PS model, plumes do not merge until t = 2.7. Surprisingly, the
final stable stationary state differs between the two numerical discretizations: RBF-PS
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converges to a tetrahedral pattern, dominated by a ` = 3 mode, while CitcomS reaches
the cubic pattern studied in the previous section. In order to reduce the possible effect
of spatial discretization error, mesh resolution in CitcomS was increased by a factor of
eight to 12×963 and doubled in the RBF-PS to 51(r)×6561(θ,λ). The results are dis-
played in Fig. 8. The same final patterns are observed, with the only difference being5

that the dodecahedral pattern is maintained for a longer period. These results imply that
there are at least two stable branches of solutions that correspond to these patterns;
however, which branch manifests itself in simulations is dependent on the numerical
discretization. We will see more evidence of this later in the discussion.

4 Stability at higher orders of symmetry: a dodecahedral initial condition10

The stability of the dodecahedral steady state solution for 2000 ≤Ra≤ 10000 can also
be seen in the time evolution of the volume-averaged root mean square velocity and
the inner and outer Nusselt numbers as given in Fig. 10. In all cases, the dodecahe-
dral convection pattern is initially observed and stationary. However, weakly unstable
modes of lower spherical harmonic degree become excited and cause the solution to15

transition to second steady-state. When this transition occurs in the time evolution is
clearly dependent on the model. For instance at t = 2, CitcomS has already reached
a steady-state cubic pattern while RBF-PS is still in the weakly unstable steady-state
dodecahedral pattern.

As the Rayleigh number increases from 2000, the final stationary pattern observed20

varies greatly between the two models, also showing how preferred patterns of convec-
tion in numerical simulations are dependent on the spatial discretization scheme. Fig-
ure 9 illustrates these end states for both numerical methods, starting from the dodec-
ahedral initial condition for 2000 ≤ Ra ≤ 70000 for each of the models. The RBF-PS
model shows a clear transition from the dodecahedral pattern to a variety of steady-25

states, depending on the Rayleigh number. For 3000 ≤Ra≤ 5750, end-state convec-
tion is dominated by the cubic steady state pattern discussed in the previous section. In
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CitcomS, this pattern is not seen until Ra= 5000 and persists to Ra= 7000. In fact, the
regime between 5000 ≤Ra≤ 5750 is the only range where both the CitcomS and RBF-
PS transition to the same final steady-state convection pattern. At 5775 ≤Ra≤ 6025,
a newly observed five-cell pattern emerges as the end stationary state in the RBF-PS
model. It results from a mixed-mode interaction between the ` = 3 and ` = 4 modes,5

as will be discussed in the next section. For 6000≤Ra≤ 10 000, the final pattern of
convection for RBF-PS is the tetrahedral pattern observed in Fig. 8. In contrast, Cit-
comS transitions to a stable steady-state axisymmetric ` = 2 pattern. For Ra> 10000,
the final patterns become unsteady, yet maintain a resemblance to the axisymmetric
and tetrahedral patterns seen in CitcomS and RBF-PS, respectively.10

5 A new convection mode: 5 cells

At 5750 ≤Ra≤ 6050 with RBF-PS method, the weakly unstable dodecahedral pattern
relaxed into a steady-state five-cell convection pattern. This structure is characterized
by five upwelling plumes: two at the poles, each surrounded by a triangular region of
downwelling and three along the equator, each surrounded by a square region of down-15

welling. The pattern appeared for a narrow range of Rayleigh numbers, between the
cubic pattern at lower Rayleigh number and the tetrahedral pattern at higher Rayleigh
number. This observation along with the fact that the convective regions of descend-
ing motion are defined by both the vertices of a triangle in the polar regions (the case
for the tetrahedral pattern) and those of a square in the equatorial regions (the case20

for the cubic pattern) leads us consider a mixed-mode interaction between the ` = 3
and an ` = 4 modes for an initial condition. Previous studies of mixed-mode patterns
bifurcating from spherically symmetric ones have been predicted in Busse and Riahi
(1988) and numerically observed in Feudel et al. (2011). However, these studied re-
ported a seven cell pattern resulting from an interaction of a ` = 4 and ` = 5 modes.25

In Chossat and Beltrame (2014), the authors investigated ` = 3,4 mode interactions in
a context compatible with Rayleigh–Bénard convection without having highlighted the

2045

occurrence of a five cell structure. Here, we focus on the formation of a steady-state
five cell pattern that is stable to large Rayleigh number, Ra= 50000, approximately 70
times the critical Rayleigh number (Rac = 712, the onset of convection).

Through numerical experimentation, we discovered that a combination of Y 3
3 and Y 0

4
spherical harmonics will yield a five cell pattern. However, in order to determine the5

volume-averaged spectral energies or variances between the two modes that yield the
fastest stabilization on a five-cell steady-state pattern, a parameter γ on the Y 0

4 mode
is introduced. It will be varied slowly from γ equals 0 to 1, in increments of 10−2. The
initial condition is now given by Eq. (6) with

TP (θ,λ) =
[
Y 3

3 (θ,λ)+γY 0
4 (θ,λ)

]
. (11)10

Figure 11 displays the initial conditions for two different values of γ that will lead to two
different steady states.

We begin at a low Rayleigh number, such as Ra = 7000. However, the results hold
for even lower Rayleigh numbers, down to Ra = 1000, just above the onset of con-15

vection. Figure 12 shows the evolution of the volume-averaged temperature and the
final convection patterns (isosurfaces of δT = ±0.15, yellow-ascending motion, blue-
descending motion) as γ is varied. As can be seen, depending on the value of γ, the
model converges to three distinct steady-states. For γ ≤ 0.20, the ` = 4 mode has no
influence and the models converge to a steady-state defined by the Y 3

3 spherical har-20

monic mode. This pattern is similar to that found in Busse and Riahi (1988), except
there is a merging of the ascending motion in the polar regions. The steady-state five
cell pattern, shown in Fig. 12e, manifests itself in both models for 0.2 ≤ γ < 0.3, with the
fastest stabilization to this state for γ = 0.5. As a result, this is what will be used when
observing the stability of the five cell pattern as a function of Rayleigh number. With the25

RBF-PS model, once the volume-averaged spectral energies between the two modes
is equal (i.e. γ = 1), the flow reverts to an axisymmetric steady-state, dominated by the
` = 4 mode. With the CitcomS model, the ratio of the modes have to only be within 10%
of one another (i.e. γ = 0.9) for this to occur. Lastly, Fig. 13 shows that this convection
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pattern is not only steady but stable with respect to perturbing the Rayleigh number
for values at least up to Ra = 50000, 70 times the critical Rayleigh number. Both mod-
els obtained this result. Also, as the Rayleigh number increases, the boundary layer
thickness decreases as would be expected with increased convection.

6 Conclusions5

In time-dependent fully nonlinear systems, when numerical simulations are performed
a great variety of complex spatiotemporal regimes can be observed depending on pa-
rameter values. However, what this paper has illustrated is that what patterns are ac-
tually observed and at which parameter values they manifest themselves is definitely
impacted by the numerical discretization used. Since computation has become a third10

arm of physical understanding, along with experimentation and analysis, it is important
highlight this fact so that a discretization scheme is not blindly applied just because it
is commonly used, as in the case of spherical harmonics.

Here, we have compared an RBF-Chebyshev discretization (RBF-PS), where RBF
can reproduce spherical harmonics but actually have been shown to perform better15

than them in spherical geometries, to a finite volume discretization, a commonly used
method in science and engineering. The latter is a community based model called
CitcomS, especially designed for studying thermal convection in a 3-D spherical shell.
For simpler spherical symmetries as the cubic pattern (sometimes referred to as the
octahedral pattern), the results at low Rayleigh number were more similar between20

the models, both destabilizing when the contribution of the non-axisymmetric ` = 4
spherical harmonic mode in the initial condition fell below 50%. However, CitcomS
showed a transition to 3 steady states as this mode was perturbed while RBF-PS went
directly to the ` = 4 axisymmetric mode. At higher Rayleigh number, the difference in
the transitional states manifested between the two models was more drastic.25

The effect of the numerical discretization on pattern formation at higher orders of
symmetry, such as dodecahedral symmetry where the initial condition is defined by

2047

a combination of ` = 6 spherical harmonic modes, was even more interesting. Although
deemed a stable state by Busse (1975) for Rayleigh numbers near the onset of con-
vection (Rac = 712), it was shown to be unstable (after a long computational period –
equivalent to 25 times the age of the Earth) for a Rayleigh number just 2.5 times Rac at
extremely high resolutions for both models. However, regardless of the Rayleigh num-5

ber, the convection evolved completely differently for each model, with the end steady
state also being very different. For example, at Ra = 7000, the RBF-PS model evolved
to a tetrahedral symmetry while CitcomS to a cubic symmetry.

Another outcome of differences in numerical discretization can be the discovery of
a stable convection pattern (with regard to perturbations in the Rayleigh number) that10

does not seem to have been highlighted in the literature. In studying the dodecahe-
dral convection pattern, in a narrow range of the Rayleigh number, the RBF-PS model
stabilized to a five cell steady state pattern that was never seen in the CitcomS model
regardless of the Rayleigh number. This lead the authors to investigate its formation,
discovering it is a strongly stable steady-state pattern of convection up to Ra = 50000.15

Both models agreed that it forms by the interaction of the Y 3
3 and Y 0

4 modes.
In conclusion, we hope that the above in depth computational study strongly illus-

trates how numerical discretization can impact the resulting patterns of convection that
are seen in simulations. This is particularly true when scientists have to rely on such
simulations in cases of strongly nonlinear systems with over a million of unknowns. In20

such cases, eigenvalue stability analysis is just not an option. Furthermore, we also
hope to have shed some light on cases of higher-order symmetry (as the dodecahe-
dral case) as well as non-symmetric cases as the five cell pattern discussed. Although
these patterns of convection are not expected to be found in the Earth, they can further
aid the verification, validation and comparison of new numerical methods, algorithms,25

and codes, as applied to mantle convection in the Earth and other terrestrial planets.
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Fig. 1. θ− λ temperature dependence of the cubic initial condition (Eq. 9) for δ = 0 (a) and
δ = 0.30 (b).
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Axymmetric (  =4)
steady state

Fig. 2. Final convection patterns resulting from perturbations, δ, to the cubic initial condition
as obtained with CitcomS (up row) and the RBF-PS method (bottom row). Diagram is valid
for 5000 ≤Ra≤ 10000. The isosurfaces show the residual temperature δT = T (r ,θ,λ)− 〈T (r)〉
where 〈T (r)〉 is the horizontally average temperature. Blue (downwelling – descending motion)
and yellow (upwelling – ascending motion) isosurfaces are for δT equal to −0.15 and 0.15,
respectively. The red solid sphere is the inner boundary.
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Fig. 3. Time trace of the volume-averaged temperature for the cubic initial conditions at Ra =
7000 for 0 ≤ δ ≤ 0.33. CitcomS shows transition to three steady-states while RBF-PS shows
only two. See Fig. 2 for the final pattern of convection associated with each model.
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Fig. 4. Stability of the cubic steady state at Ra = 70000 with CitcomS (up row) and the RBF-PS
method (bottom row). The cubic steady state pattern is destabilized for δ ≥ 0.065 with CitcomS
and δ ≥ 0.07 with RBF-PS. The figure highlights transitional patterns between the two main
geometries.
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Fig. 5. Time trace of (a) the outer Nusselt number and (b) the RMS Velocity for both models
at Ra = 70 000 for δ = 0.09. Both methods converge to an unsteady oscillating axisymmetric
pattern dominated by the ` = 2 mode (see Fig. 4).
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Fig. 7. θ− λ temperature dependence of the dodecahedral initial condition (Eq. 10).
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Fig. 13. Stability of steady state five cell convection pattern as a function of the Rayleigh,
displayed by the residual temperature for γ = 0.5 (a) Ra = 7×103, (b) 104, (c) 2×104, (d) 3×104,
(e) 4×104 and (f) 5×104.
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