74 research outputs found
Infrared spectra of one- and two-dimensional fullerene polymer structures: RbC60 and rhombohedral C-60
We compare the infrared spectra of two types of fullerene polymers: the linear-chain RbC60 and the two-dimensional pressure-polymerized rhombohedral C-60. Both the splitting of the F-1u modes and the structure of newly activated Lines are in agreement with fully ordered structures of molecular symmetry D-2h and D-3d, respectively
Vibrational spectra of C60C8H8 and C70C8H8 in the rotor-stator and polymer phases
C60-C8H8 and C70-C8H8 are prototypes of rotor-stator cocrystals. We present
infrared and Raman spectra of these materials and show how the rotor-stator
nature is reflected in their vibrational properties. We measured the
vibrational spectra of the polymer phases poly(C60C8H8) and poly(C70C8H8)
resulting from a solid state reaction occurring on heating. Based on the
spectra we propose a connection pattern for the fullerene in poly(C60C8H8),
where the symmetry of the C60 is D2h. On illuminating the C60-C8H8 cocrystal
with green or blue light a photochemical reaction was observed leading to a
similar product to that of the thermal polymerization.Comment: 26 pages, 8 figures, to appear in Journal of Physical Chemistry B 2nd
version: minor changes in wording, accepted version by journa
Resonance energy transfer in self-organized organic/inorganic dendrite structures
Hybrid materials formed by semiconductor quantum dots and J-aggregates of cyanine dyes provide a unique combination of enhanced absorption in inorganic constituents with large oscillator strength and extremely narrow exciton bands of the organic component. The optical properties of dendrite structures with fractal dimension 1.7â1.8, formed from J-aggregates integrated with CdTe quantum dots (QDs),
have been investigated by photoluminescence spectroscopy and fluorescence lifetime imaging microscopy. Our results demonstrate that (i)J-aggregates are coupled to QDs by Fšorster-type resonant energy transfer and (ii) there are energy fluxes from the periphery to the centre of the structure, where the QD density is higher than in the periphery of the dendrite. Such an anisotropic energy transport can
be only observed when dendrites are formed from QDs integrated with J-aggregates. These QD/
J-aggregate hybrid systems can have applications in light harvesting systems and optical sensors with extended absorption spectra.Fundação para a CiĂȘncia e a Tecnologia (FCT
RG flows from Spin(7), CY 4-fold and HK manifolds to AdS, Penrose limits and pp waves
We obtain explicit realizations of holographic renormalization group (RG)
flows from M-theory, from E^{2,1} \times Spin(7) at UV to AdS_4 \times
\tilde{S^7} (squashed S^7) at IR, from E^{2,1} \times CY4 at UV to AdS_4 \times
Q^{1,1,1} at IR, and from E^{2,1} \times HK (hyperKahler) at UV to AdS_4 \times
N^{0,1,0} at IR. The dual type IIA string theory configurations correspond to
D2-D6 brane systems where D6 branes wrap supersymmetric four-cycles. We also
study the Penrose limits and obtain the pp-wave backgrounds for the above
configurations. Besides, we study some examples of non-supersymmetric and
supersymmetric flows in five-dimensional gauge theories.Comment: 42 pages, 6 eps figures, typos and misprints correcte
General Brane Geometries from Scalar Potentials: Gauged Supergravities and Accelerating Universes
We find broad classes of solutions to the field equations for d-dimensional
gravity coupled to an antisymmetric tensor of arbitrary rank and a scalar field
with non-vanishing potential. Our construction generates these configurations
from the solution of a single nonlinear ordinary differential equation, whose
form depends on the scalar potential. For an exponential potential we find
solutions corresponding to brane geometries, generalizing the black p-branes
and S-branes known for the case of vanishing potential. These geometries are
singular at the origin with up to two (regular) horizons. Their asymptotic
behaviour depends on the parameters of the model. When the singularity has
negative tension or the cosmological constant is positive we find
time-dependent configurations describing accelerating universes. Special cases
give explicit brane geometries for (compact and non-compact) gauged
supergravities in various dimensions, as well as for massive 10D supergravity,
and we discuss their interrelation. Some examples lift to give new solutions to
10D supergravity. Limiting cases with a domain wall structure preserve part of
the supersymmetries of the vacuum. We also consider more general potentials,
including sums of exponentials. Exact solutions are found for these with up to
three horizons, having potentially interesting cosmological interpretation. We
give several additional examples which illustrate the power of our techniques.Comment: 54 pages, 6 figures. Uses JHEP3. Published versio
The Cauchy problem of f(R) gravity
The initial value problem of metric and Palatini f(R)gravity is studied by
using the dynamical equivalence between these theories and Brans-Dicke gravity.
The Cauchy problem is well-formulated for metric f(R)gravity in the presence of
matter and well-posed in vacuo. For Palatini f(R)gravity, instead, the Cauchy
problem is not well-formulated.Comment: 16 latex pages, to appear in Class. Quantum Grav; typographical
errors corrected, new references adde
Search for subsolar-mass black hole binaries in the second part of Advanced LIGOâs and Advanced Virgoâs third observing run
We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2âMââ1.0âMâ and mass ratio q â„ 0.1 in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2yrâ1
â . We estimate the sensitivity of our search over the entirety of Advanced LIGOâs and Advanced Virgoâs third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs fPBH âłâ0.6 (at 90% confidence) in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions we are unable to rule out fPBH = 1. For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes, we find an upper bound fDBH < 10â5 on the fraction of atomic dark matter collapsed into black holes
Brane effective actions, kappa-symmetry and applications
This is a review on brane effective actions, their symmetries and some of their applications. Its first part covers the GreenâSchwarz formulation of single M- and D-brane effective actions focusing on kinematical aspects: the identification of their degrees of freedom, the importance of world volume diffeomorphisms and kappa symmetry to achieve manifest spacetime covariance and supersymmetry, and the explicit construction of such actions in arbitrary on-shell supergravity backgrounds. Its second part deals with applications. First, the use of kappa symmetry to determine supersymmetric world volume solitons. This includes their explicit construction in flat and curved backgrounds, their interpretation as BogomolânyiâPrasadâSommerfield (BPS) states carrying (topological) charges in the supersymmetry algebra and the connection between supersymmetry and Hamiltonian BPS bounds. When available, I emphasise the use of these solitons as constituents in microscopic models of black holes. Second, the use of probe approximations to infer about the non-trivial dynamics of strongly-coupled gauge theories using the anti de Sitter/conformal field theory (AdS/CFT) correspondence. This includes expectation values of Wilson loop operators, spectrum information and the general use of D-brane probes to approximate the dynamics of systems with small number of degrees of freedom interacting with larger systems allowing a dual gravitational description. Its final part briefly discusses effective actions for N D-branes and M2-branes. This includes both Super-Yang-Mills theories, their higher-order corrections and partial results in covariantising these couplings to curved backgrounds, and the more recent supersymmetric ChernâSimons matter theories describing M2-branes using field theory, brane constructions and 3-algebra considerations
One sixth of Amazonian tree diversity is dependent on river floodplains
Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.Naturali
- âŠ