<u>57</u> ERRATA 5543

Erratum: Infrared spectra of one- and two-dimensional fullerene polymer structures: RbC $_{60}$ and rhombohedral C $_{60}$ [Phys. Rev. B 55, 10 999 (1997)]

K. Kamarás, Y. Iwasa, and L. Forró

[S0163-1829(98)05509-X]

Table I of the above article contains some mistakes and should be replaced by the table below. The corrections mainly concern the expected Raman lines of rh- C_{60} for which we did not present any experimental data and therefore do not influence the conclusions of our measurements. Regarding the infrared lines, the correct statement is that *all* modes are expected to show a twofold splitting in D_{3d} symmetry, which is borne out by the experimental findings.

We thank Z. A. Nemeth for drawing our attention to the error.

TABLE I. Correlation table of symmetry groups I_h , D_{2h} , and D_{3d} . Under "splitting," we denote the change in the number of expected infrared (IR) and Raman (R) active modes when the symmetry of the C_{60} ball changes from I_h to the respective point group. The total number and the symmetry species of the allowed modes are summarized in the last two rows.

I_h	D_{2h}	Splitting	D_{3d}	Splitting
$2A_g$	$2A_g$	$R \ 1 \rightarrow 1$	$2A_{1g}$	$R \ 1 \rightarrow 1$
$3F_{1g}$	$3B_{1g} + 3B_{2g} + 3B_{3g}$	$R \ 0 \rightarrow 3$	$3A_{2g} + 3E_g$	$R \ 0 \rightarrow 1$
$4F_{2g}$	$4B_{1g} + 4B_{2g} + 4B_{3g}$	$R \ 0 \rightarrow 3$	$4A_{2g}+4E_{g}$	$R \ 0 \rightarrow 1$
$6G_g$	$6A_g + 6B_{1g} + 6B_{2g} + 6B_{3g}$	$R \ 0 \rightarrow 4$	$6A_{1g} + 6A_{2g} + 6E_{g}$	$R \ 0 \rightarrow 2$
$8H_g$	$16A_g + 8B_{1g} + 8B_{2g} + 8B_{3g}$	$R \ 1 \rightarrow 5$	$8A_{1g} + 16E_g$	$R \ 1 \rightarrow 3$
$1A_u$	$1A_u$	IR $0 \rightarrow 0$	$1A_{1u}$	IR $0\rightarrow0$
$4F_{1u}$	$4B_{1u} + 4B_{2u} + 4B_{3u}$	IR $1\rightarrow 3$	$4A_{2u}+4E_u$	IR $1\rightarrow 2$
$5F_{2u}$	$5B_{1u} + 5B_{2u} + 5B_{3u}$	IR $0\rightarrow 3$	$5A_{2u}+5E_u$	IR $0\rightarrow 2$
$6G_u$	$6A_u + 6B_{1u} + 6B_{2u} + 6B_{3u}$	IR $0\rightarrow 3$	$6A_{1u} + 6A_{2u} + 6E_u$	IR $0\rightarrow 2$
$7H_u$	$14A_u + 7B_{1u} + 7B_{2u}$	IR $0\rightarrow 3$	$7A_{2u} + 14E_u$	IR $0\rightarrow 2$
$R~10(A_g,H_g)$	R 87 $(A_g, B_{1g}, B_{2g}, B_{3g})$		$R \ 45 \ (A_{1g} , E_g)$	
IR 4 (F_{1u})	IR 66 (B_{1u}, B_{2u}, B_{3u})		$IR 44 (A_{2u}, E_u)$	