409 research outputs found
Short-time rotational diffusion in monodisperse charge-stabilized colloidal suspensions
We investigate the combined effects of electrostatic interactions and
hydrodynamic interactions on the short-time rotational self-diffusion
coefficient in charge-stabilized suspensions. We calculate this coefficient as
a function of volume fraction for various effective particle charges and
amounts of added electrolyte. The influence of the hydrodynamic interactions on
the rotational diffusion coefficient is less pronounced for charged particles
than for uncharged ones. Salt-free suspensions are weakly influenced by
hydrodynamic interactions. For these strongly correlated systems we obtain a
quadratic volume fraction-dependence of the diffusion coefficient, which is
well explained in terms of an effective hard sphere model.Comment: 21 pages, LaTeX, 7 Postscript figures included using epsf, to appear
in Physica
Non-monotonic density dependence of the diffusion of DNA fragments in low-salt suspensions
The high linear charge density of 20-base-pair oligomers of DNA is shown to
lead to a striking non-monotonic dependence of the long-time self-diffusion on
the concentration of the DNA in low-salt conditions. This generic non-monotonic
behavior results from both the strong coupling between the electrostatic and
solvent-mediated hydrodynamic interactions, and from the renormalization of
these electrostatic interactions at large separations, and specifically from
the dominance of the far-field hydrodynamic interactions caused by the strong
repulsion between the DNA fragments.Comment: 4 pages, 2 figures. Physical Review E, accepted on November 24, 200
Electrokinetic and hydrodynamic properties of charged-particles systems: From small electrolyte ions to large colloids
Dynamic processes in dispersions of charged spherical particles are of
importance both in fundamental science, and in technical and bio-medical
applications. There exists a large variety of charged-particles systems,
ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized
colloids. We review recent advances in theoretical methods for the calculation
of linear transport coefficients in concentrated particulate systems, with the
focus on hydrodynamic interactions and electrokinetic effects. Considered
transport properties are the dispersion viscosity, self- and collective
diffusion coefficients, sedimentation coefficients, and electrophoretic
mobilities and conductivities of ionic particle species in an external electric
field. Advances by our group are also discussed, including a novel
mode-coupling-theory method for conduction-diffusion and viscoelastic
properties of strong electrolyte solutions. Furthermore, results are presented
for dispersions of solvent-permeable particles, and particles with non-zero
hydrodynamic surface slip. The concentration-dependent swelling of ionic
microgels is discussed, as well as a far-reaching dynamic scaling behavior
relating colloidal long- to short-time dynamics
Enhanced structural correlations accelerate diffusion in charge-stabilized colloidal suspensions
Theoretical calculations for colloidal charge-stabilized and hard sphere
suspensions show that hydrodynamic interactions yield a qualitatively different
particle concentration dependence of the short-time self-diffusion coefficient.
The effect, however, is numerically small and hardly accessible by conventional
light scattering experiments. Applying multiple-scattering decorrelation
equipment and a careful data analysis we show that the theoretical prediction
for charged particles is in agreement with our experimental results from
aqueous polystyrene latex suspensions.Comment: 1 ps-file (MS-Word), 14 page
Self-diffusion coefficients of charged particles: Prediction of Nonlinear volume fraction dependence
We report on calculations of the translational and rotational short-time
self-diffusion coefficients and for suspensions of
charge-stabilized colloidal spheres. These diffusion coefficients are affected
by electrostatic forces and many-body hydrodynamic interactions (HI). Our
computations account for both two-body and three-body HI. For strongly charged
particles, we predict interesting nonlinear scaling relations and depending on volume fraction
, with essentially charge-independent parameters and . These
scaling relations are strikingly different from the corresponding results for
hard spheres. Our numerical results can be explained using a model of effective
hard spheres. Moreover, we perceptibly improve the known result for of
hard sphere suspensions.Comment: 8 pages, LaTeX, 3 Postscript figures included using eps
Assessment of electrophoresis and electroosmosis in construction materials: effect of enhancing electrolytes and heavy metals contamination
Electrokinetic effects are those that take place by application of an electric field to porous materials, with the zeta potential as the key parameter. Specifically, in the case of contaminated construction materials, the generation of an electroosmotic flux, with the corresponding dragging due to water transport, is a crucial mechanism to succeed in the treatment of decontamination. Therefore, it is of great interest trying to optimize the treatment by the addition of specific electrolytes enhancing the electrokinetic phenomena. Most of the data of zeta potential found in literature for construction materials are based in micro-electrophoresis measurements, which are quite far of the real conditions of application of the remediation treatments. In this paper, electrophoretic and electroosmotic experiments, with monolithic and powdered material respectively, have been carried out for mortar, brick and granite clean and contaminated with Cs, Sr, Co, Cd, Cu and Pb. The electrolytes tested have been distilled water (DW), Na2–EDTA, oxalic acid, acetic acid and citric acid. The zeta potential values have been determined through the two different techniques and the results compared and critically analysed
A simple patchy colloid model for the phase behavior of lysozyme dispersions
We propose a minimal model for spherical proteins with aeolotopic pair
interactions to describe the equilibrium phase behavior of lysozyme. The
repulsive screened Coulomb interactions between the particles are taken into
account assuming that the net charges are smeared out homogeneously over the
spherical protein surfaces. We incorporate attractive surface patches, with the
interactions between patches on different spheres modeled by an attractive
Yukawa potential. The parameters entering the attractive Yukawa potential part
are determined using information on the experimentally accessed gas-liquid-like
critical point. The Helmholtz free energy of the fluid and solid phases is
calculated using second-order thermodynamic perturbation theory. Our
predictions for the solubility curve are in fair agreement with experimental
data. In addition, we present new experimental data for the gas-liquid
coexistence curves at various salt concentrations and compare these with our
model calculations. In agreement with earlier findings, we observe that the
strength and the range of the attractive potential part only weakly depend on
the salt content
Decoherence times of universal two-qubit gates in the presence of broad-band noise
The controlled generation of entangled states of two quantum bits is a
fundamental step toward the implementation of a quantum information processor.
In nano-devices this operation is counteracted by the solid-state environment,
characterized by a broadband and non-monotonic power spectrum, often 1/f at low
frequencies. For single-qubit gates, incoherent processes due to fluctuations
acting on different time scales result in peculiar short- and long-time
behavior. Markovian noise gives rise to exponential decay with relaxation and
decoherence times, T1 and T2, simply related to the symmetry of the
qubit-environment coupling Hamiltonian. Noise with the 1/f power spectrum at
low frequencies is instead responsible for defocusing processes and algebraic
short-time behavior. In this paper, we identify the relevant decoherence times
of an entangling operation due to the different decoherence channels
originating from solid-state noise. Entanglement is quantified by concurrence,
which we evaluate in an analytic form employing a multi-stage approach. The
'optimal' operating conditions of reduced sensitivity to noise sources are
identified. We apply this analysis to a superconducting \sqrt{i-SWAP} gate for
experimental noise spectra.Comment: 35 pages, 11 figure
A corresponding states approach to Small-Angle-Scattering for polydisperse ionic colloidal fluids
Approximate scattering functions for polydisperse ionic colloidal fluids are
obtained by a corresponding states approach. This assumes that all pair
correlation functions of a polydisperse fluid are
conformal to those of an appropriate monodisperse binary fluid (reference
system) and can be generated from them by scaling transformations. The
correspondence law extends to ionic fluids a {\it scaling approximation} (SA)
successfully proposed for nonionic colloids in a recent paper. For the
primitive model of charged hard spheres in a continuum solvent, the partial
structure factors of the monodisperse binary reference system are evaluated by
solving the Orstein-Zernike (OZ) integral equations coupled with an approximate
closure. The SA is first tested within the mean spherical approximation (MSA)
closure, which allows analytical solutions. The results are found in good
overall agreement with exact MSA predictions up to relevant polidispersity. The
SA is shown to be an improvement over the ``decoupling approximation'' extended
to the ionic case. The simplicity of the SA scheme allows its application also
when the OZ equations can be solved only numerically. An example is then given
by using the hypernetted chain (HNC) closure. Shortcomings of the SA approach,
its possible use in the analysis of experimental scattering data and other
related points are also briefly addressed.Comment: 29 pages, 7 postscript figures (included), Latex 3.0, uses aps.sty,
to appear in Phys. Rev. E (1999
Gaussian density fluctuations, mode coupling theory, and all that
We consider a toy model for glassy dynamics of colloidal suspensions: a
single Brownian particle diffusing among immobile obstacles. If Gaussian
factorization of static density fluctuations is assumed, this model can be
solved without factorization approximation for any dynamic correlation
function. The solution differs from that obtained from the ideal mode coupling
theory (MCT). The latter is equivalent to including only some, positive
definite terms in an expression for the memory function. An approximate
re-summation of the complete expression suggests that, under the assumption of
Gaussian factorization of static fluctuations, mobile particle's motion is
always diffusive. In contrast, MCT predicts that the mobile particle becomes
localized at a high enough obstacle density. We discuss the implications of
these results for models for glassy dynamics.Comment: to be published in Europhys. Let
- …