180 research outputs found

    Down-regulation of ABCC11 protein (MRP8) in human breast cancer

    Get PDF
    Aim of this article is to investigate the expression of ABCC11 (MRP8) protein in normal breast tissue, and examine the difference in ABCC11 mRNA and protein expression between normal breast and breast cancer tissues taking into account ABCC11 genotype (a functional SNP, rs17822931) and estrogen receptor (ER) status

    BAC-FISH refutes report of an 8p22–8p23.1 inversion or duplication in 8 patients with Kabuki syndrome

    Get PDF
    BACKGROUND: Kabuki syndrome is a multiple congenital anomaly/mental retardation syndrome. The syndrome is characterized by varying degrees of mental retardation, postnatal growth retardation, distinct facial characteristics resembling the Kabuki actor's make-up, cleft or high-arched palate, brachydactyly, scoliosis, and persistence of finger pads. The multiple organ involvement suggests that this is a contiguous gene syndrome but no chromosomal anomalies have been isolated as an etiology. Recent studies have focused on possible duplications in the 8p22–8p23.1 region but no consensus has been reached. METHODS: We used bacterial artificial chromosome-fluorescent in-situ hybridization (BAC-FISH) and G-band analysis to study eight patients with Kabuki syndrome. RESULTS: Metaphase analysis revealed no deletions or duplications with any of the BAC probes. Interphase studies of the Kabuki patients yielded no evidence of inversions when using three-color FISH across the region. These results agree with other research groups' findings but disagree with the findings of Milunsky and Huang. CONCLUSION: It seems likely that Kabuki syndrome is not a contiguous gene syndrome of the 8p region studied

    Molecular karyotyping in 17 patients and mutation screening in 41 patients with Kabuki syndrome.

    Get PDF
    The Kabuki syndrome (KS, OMIM 147920), also known as the Niikawa-Kuroki syndrome, is a multiple congenital anomaly/mental retardation syndrome characterized by a distinct facial appearance. The cause of KS has been unidentified, even by whole-genome scan with array comparative genomic hybridization (CGH). In recent years, high-resolution oligonucleotide array technologies have enabled us to detect fine copy number alterations. In 17 patients with KS, molecular karyotyping was carried out with GeneChip 250K NspI array (Affymetrix) and Copy Number Analyser for GeneChip (CNAG). It showed seven copy number alterations, three deleted regions and four duplicated regions among the patients, with the exception of registered copy number variants (CNVs). Among the seven loci, only the region of 9q21.11-q21.12 ( approximately 1.27 Mb) involved coding genes, namely, transient receptor potential cation channel, subfamily M, member 3 (TRPM3), Kruppel-like factor 9 (KLF9), structural maintenance of chromosomes protein 5 (SMC5) and MAM domain containing 2 (MAMDC2). Mutation screening for the genes detected 10 base substitutions consisting of seven single-nucleotide polymorphisms (SNPs) and three silent mutations in 41 patients with KS. Our study could not show the causative genes for KS, but the locus of 9q21.11-q21.12, in association with a cleft palate, may contribute to the manifestation of KS in the patient. As various platforms on oligonucleotide arrays have been developed, higher resolution platforms will need to be applied to search tiny genomic rearrangements in patients with KS.Journal of Human Genetics (2009) 54, 304-309; doi:10.1038/jhg.2009.30; published online 03 April 2009

    Array-CGH in patients with Kabuki-like phenotype: Identification of two patients with complex rearrangements including 2q37 deletions and no other recurrent aberration

    Get PDF
    Background: Kabuki syndrome (KS) is a multiple congenital anomaly syndrome characterized by specific facial features, mild to moderate mental retardation, postnatal growth delay, skeletal abnormalities, and unusual dermatoglyphic patterns with prominent fingertip pads. A 3.5 Mb duplication at 8p23.1-p22 was once reported as a specific alteration in KS but has not been confirmed in other patients. The molecular basis of KS remains unknown. Methods: We have studied 16 Spanish patients with a clinical diagnosis of KS or KS-like to search for genomic imbalances using genome-wide array technologies. All putative rearrangements were confirmed by FISH, microsatellite markers and/or MLPA assays, which also determined whether the imbalance was de novo or inherited. Results: No duplication at 8p23.1-p22 was observed in our patients. We detected complex rearrangements involving 2q in two patients with Kabuki-like features: 1) a de novo inverted duplication of 11 Mb with a 4.5 Mb terminal deletion, and 2) a de novo 7.2 Mb-terminal deletion in a patient with an additional de novo 0.5 Mb interstitial deletion in 16p. Additional copy number variations (CNV), either inherited or reported in normal controls, were identified and interpreted as polymorphic variants. No specific CNV was significantly increased in the KS group. Conclusion: Our results further confirmed that genomic duplications of 8p23 region are not a common cause of KS and failed to detect other recurrent rearrangement causing this disorder. The detection of two patients with 2q37 deletions suggests that there is a phenotypic overlap between the two conditions, and screening this region in the Kabuki-like patients should be considered.This work was funded by grants from the Spanish Ministry of Health (FIS PI042063), Genome Spain and the European Commission (FP6-2005-037627). IC was supported by a Juan de la Cierva Postdoctoral fellowship

    A Genome-wide Linkage Analysis and Mutation Analysis of Hereditary Congenital Blepharoptosis in a Japanese Family

    Get PDF
    Hereditary congenital ptosis (PTOS) is defined as drooping of the upper eyelid without any other accompanying symptoms and distinguished from syndromic blepharoptosis.Two previous linkage analyses assigned a PTOS locus (PTOS1) to 1p32-p34.1 and another (PTOS2) to Xq24-q27.1. In addition, in a sporadic case with a balanced chromosomal translocation t(1;8)(p34.3;q21.12), the ZFHX4 (zinc finger homeodomain 4) gene was found to be disrupted at the 8q21.12 breakpoint, but there was no gene at the 1p34.3 breakpoint, suggesting the existence of the third PTOS locus (PTOS1) at 8q21.12. We carried out a genome-wide linkage analysis in a Japanese PTOS family and calculated two-point and multipoint LOD scores with reduced penetrance. Haplotype analysis gave three candidate disease-responsible regions, i.e., 8q21.11-q22.1, 12q24.32-q24.33 and 14q21.1-q23.2. Although the family size is too small to define one of them, 8q21.11-q22.1 is a likely candidate region, because it contains the previously reported translocation breakpoint above. We thus performed mutation, Southern-blot and methylation analyses of ZFHX4, but could not find any disease specific change in the family. Nevertheless, our data may support the localization of PTOS1.長崎大学学位論文 学位記番号:博(医歯薬)甲第153号 博士(医学)学位授与年月日:平成20年3月19

    The history of human populations in the Japanese Archipelago inferred from genome-wide SNP data with a special reference to the Ainu and the Ryukyuan populations

    Get PDF
    The Japanese Archipelago stretches over 4000 km from north to south, and is the homeland of the three human populations; the Ainu, the Mainland Japanese and the Ryukyuan. The archeological evidence of human residence on this Archipelago goes back to 430 000 years, and various migration routes and root populations have been proposed. Here, we determined close to one million single-nucleotide polymorphisms (SNPs) for the Ainu and the Ryukyuan, and compared these with existing data sets. This is the first report of these genome-wide SNP data. Major findings are: (1) Recent admixture with the Mainland Japanese was observed for more than one third of the Ainu individuals from principal component analysis and frappe analyses; (2) The Ainu population seems to have experienced admixture with another population, and a combination of two types of admixtures is the unique characteristics of this population; (3) The Ainu and the Ryukyuan are tightly clustered with 100% bootstrap probability followed by the Mainland Japanese in the phylogenetic trees of East Eurasian populations. These results clearly support the dual structure model on the Japanese Archipelago populations, though the origins of the Jomon and the Yayoi people still remain to be solved

    The International HapMap Project

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62838/1/nature02168.pd

    A second generation human haplotype map of over 3.1 million SNPs

    Full text link
    We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r(2) of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r(2) of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62863/1/nature06258.pd
    corecore