25 research outputs found

    Effect of selective decontamination of the digestive tract on hospital mortality in critically Ill patients receiving mechanical ventilation a randomized clinical trial

    Get PDF
    Importance Whether selective decontamination of the digestive tract (SDD) reduces mortality in critically ill patients remains uncertain. Objective To determine whether SDD reduces in-hospital mortality in critically ill adults. Design, Setting, and Participants A cluster, crossover, randomized clinical trial that recruited 5982 mechanically ventilated adults from 19 intensive care units (ICUs) in Australia between April 2018 and May 2021 (final follow-up, August 2021). A contemporaneous ecological assessment recruited 8599 patients from participating ICUs between May 2017 and August 2021. Interventions ICUs were randomly assigned to adopt or not adopt a SDD strategy for 2 alternating 12-month periods, separated by a 3-month interperiod gap. Patients in the SDD group (n = 2791) received a 6-hourly application of an oral paste and administration of a gastric suspension containing colistin, tobramycin, and nystatin for the duration of mechanical ventilation, plus a 4-day course of an intravenous antibiotic with a suitable antimicrobial spectrum. Patients in the control group (n = 3191) received standard care. Main Outcomes and Measures The primary outcome was in-hospital mortality within 90 days. There were 8 secondary outcomes, including the proportion of patients with new positive blood cultures, antibiotic-resistant organisms (AROs), and Clostridioides difficile infections. For the ecological assessment, a noninferiority margin of 2% was prespecified for 3 outcomes including new cultures of AROs. Results Of 5982 patients (mean age, 58.3 years; 36.8% women) enrolled from 19 ICUs, all patients completed the trial. There were 753/2791 (27.0%) and 928/3191 (29.1%) in-hospital deaths in the SDD and standard care groups, respectively (mean difference, −1.7% [95% CI, −4.8% to 1.3%]; odds ratio, 0.91 [95% CI, 0.82-1.02]; P = .12). Of 8 prespecified secondary outcomes, 6 showed no significant differences. In the SDD vs standard care groups, 23.1% vs 34.6% had new ARO cultures (absolute difference, −11.0%; 95% CI, −14.7% to −7.3%), 5.6% vs 8.1% had new positive blood cultures (absolute difference, −1.95%; 95% CI, −3.5% to −0.4%), and 0.5% vs 0.9% had new C difficile infections (absolute difference, −0.24%; 95% CI, −0.6% to 0.1%). In 8599 patients enrolled in the ecological assessment, use of SDD was not shown to be noninferior with regard to the change in the proportion of patients who developed new AROs (−3.3% vs −1.59%; mean difference, −1.71% [1-sided 97.5% CI, −∞ to 4.31%] and 0.88% vs 0.55%; mean difference, −0.32% [1-sided 97.5% CI, −∞ to 5.47%]) in the first and second periods, respectively. Conclusions and Relevance Among critically ill patients receiving mechanical ventilation, SDD, compared with standard care without SDD, did not significantly reduce in-hospital mortality. However, the confidence interval around the effect estimate includes a clinically important benefit. Trial Registration ClinicalTrials.gov Identifier: NCT0238903

    Direct Identification of the Meloidogyne incognita Secretome Reveals Proteins with Host Cell Reprogramming Potential

    Get PDF
    The root knot nematode, Meloidogyne incognita, is an obligate parasite that causes significant damage to a broad range of host plants. Infection is associated with secretion of proteins surrounded by proliferating cells. Many parasites are known to secrete effectors that interfere with plant innate immunity, enabling infection to occur; they can also release pathogen-associated molecular patterns (PAMPs, e.g., flagellin) that trigger basal immunity through the nematode stylet into the plant cell. This leads to suppression of innate immunity and reprogramming of plant cells to form a feeding structure containing multinucleate giant cells. Effectors have generally been discovered using genetics or bioinformatics, but M. incognita is non-sexual and its genome sequence has not yet been reported. To partially overcome these limitations, we have used mass spectrometry to directly identify 486 proteins secreted by M. incognita. These proteins contain at least segmental sequence identity to those found in our 3 reference databases (published nematode proteins; unpublished M. incognita ESTs; published plant proteins). Several secreted proteins are homologous to plant proteins, which they may mimic, and they contain domains that suggest known effector functions (e.g., regulating the plant cell cycle or growth). Others have regulatory domains that could reprogram cells. Using in situ hybridization we observed that most secreted proteins were produced by the subventral glands, but we found that phasmids also secreted proteins. We annotated the functions of the secreted proteins and classified them according to roles they may play in the development of root knot disease. Our results show that parasite secretomes can be partially characterized without cognate genomic DNA sequence. We observed that the M. incognita secretome overlaps the reported secretome of mammalian parasitic nematodes (e.g., Brugia malayi), suggesting a common parasitic behavior and a possible conservation of function between metazoan parasites of plants and animals

    Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease

    Get PDF
    Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions

    Prospective Observational Study on acute Appendicitis Worldwide (POSAW)

    Get PDF
    Acute appendicitis (AA) is the most common surgical disease, and appendectomy is the treatment of choice in the majority of cases. A correct diagnosis is key for decreasing the negative appendectomy rate. The management can become difficult in case of complicated appendicitis. The aim of this study is to describe the worldwide clinical and diagnostic work-up and management of AA in surgical departments.info:eu-repo/semantics/publishedVersio

    Sequence-Level Analysis of the Major European Huntington Disease Haplotype

    Get PDF
    Huntington disease (HD) reflects the dominant consequences of a CAG-repeat expansion in HTT. Analysis of common SNP-based haplotypes has revealed that most European HD subjects have distinguishable HTT haplotypes on their normal and disease chromosomes and that ∼50% of the latter share the same major HD haplotype. We reasoned that sequence-level investigation of this founder haplotype could provide significant insights into the history of HD and valuable information for gene-targeting approaches. Consequently, we performed whole-genome sequencing of HD and control subjects from four independent families in whom the major European HD haplotype segregates with the disease. Analysis of the full-sequence-based HTT haplotype indicated that these four families share a common ancestor sufficiently distant to have permitted the accumulation of family-specific variants. Confirmation of new CAG-expansion mutations on this haplotype suggests that unlike most founders of human disease, the common ancestor of HD-affected families with the major haplotype most likely did not have HD. Further, availability of the full sequence data validated the use of SNP imputation to predict the optimal variants for capturing heterozygosity in personalized allele-specific gene-silencing approaches. As few as ten SNPs are capable of revealing heterozygosity in more than 97% of European HD subjects. Extension of allele-specific silencing strategies to the few remaining homozygous individuals is likely to be achievable through additional known SNPs and discovery of private variants by complete sequencing of HTT. These data suggest that the current development of gene-based targeting for HD could be extended to personalized allele-specific approaches in essentially all HD individuals of European ancestry

    Common SNP-Based Haplotype Analysis of the 4p16.3 Huntington Disease Gene Region.

    Get PDF
    Age at the onset of motor symptoms in Huntington disease (HD) is determined largely by the length of a CAG repeat expansion in HTT but is also influenced by other genetic factors. We tested whether common genetic variation near the mutation site is associated with differences in the distribution of expanded CAG alleles or age at the onset of motor symptoms. To define disease-associated single-nucleotide polymorphisms (SNPs), we compared 4p16.3 SNPs in HD subjects with population controls in a case:control strategy, which revealed that the strongest signals occurred at a great distance from the HD mutation as a result of "synthetic association" with SNP alleles that are of low frequency in population controls. Detailed analysis delineated a prominent ancestral haplotype that accounted for ∼50% of HD chromosomes and extended to at least 938 kb on about half of these. Together, the seven most abundant haplotypes accounted for ∼83% of HD chromosomes. Neither the extended shared haplotype nor the individual local HTT haplotypes were associated with altered CAG-repeat length distribution or residual age at the onset of motor symptoms, arguing against modification of these disease features by common cis-regulatory elements. Similarly, the 11 most frequent control haplotypes showed no trans-modifier effect on age at the onset of motor symptoms. Our results argue against common local regulatory variation as a factor influencing HD pathogenesis, suggesting that genetic modifiers be sought elsewhere in the genome. They also indicate that genome-wide association analysis with a small number of cases can be effective for regional localization of genetic defects, even when a founder effect accounts for only a fraction of the disorder

    The relationship between CAG repeat length and age of onset differs for Huntington's disease patients with juvenile onset or adult onset

    No full text
    Age of onset for Huntington's disease (HD) varies inversely with the length of the disease-causing CAG repeat expansion in the HD gene. A simple exponential regression model yielded adjusted R-squared values of 0.728 in a large set of Venezuelan kindreds and 0.642 in a North American, European, and Australian sample (the HD MAPS cohort). We present evidence that a two-segment exponential regression curve provides a significantly better fit than the simple exponential regression. A plot of natural log-transformed age of onset against CAG repeat length reveals this segmental relationship. This two-segment exponential regression on age of onset data increases the adjusted R-squared values by 0.012 in the Venezuelan kindreds and by 0.035 in the HD MAPS cohort. Although the amount of additional variance explained by the segmental regression approach is modest, the two slopes of the two-segment regression are significantly different from each other in both the Venezuelan kindreds [F(2, 439) =11.13, P =2 × 10 -5] and in the HD MAPS cohort [F(2, 688) =38.27, P = 2 × 10 -16]. In both populations, the influence of each CAG repeat on age of onset appears to be stronger in the adult-onset range of CAG repeats than in the juvenile-onset range. © 2006 The Authors Journal compilation © 2006 University College London.link_to_subscribed_fulltex
    corecore