36 research outputs found

    Y-chromosome Short Tandem Repeat DYS458.2 Non-consensus Alleles Occur Independently in Both Binary Haplogroups J1-M267 and R1b3-M405

    Get PDF
    Cilj: Odrediti haploskupinsku osnovu “non-consensus” kratkih udvojenih sljedova (engl., short tandem repeat, STR) alela DYS458.2 na kromosomu Y i procijeniti njihov filogenetski podustroj i učestalost u reprezentativnim uzorcima sa Srednjega Istoka, Europe i Pakistana. Postupci: Molekularna karakterizacija povezanosti i konstrukcija haplotipova provedena je kombinacijom dvaju pristupa – analizom binarnog polimorfizma koji definira haploskupinu kromosoma Y i analizom do 37 lokusa STR, uključujući i DYS388. Za utvrđivanje povezanosti kromosoma Y koji sadrže slijed DYS458.2, rabljeno je sekvencioniranje DNA lokusa DYS458 i mrežna analiza udaljenosti od medijana. Rezultati Pokazali smo da je novi alel DYS458.2 nastao nezavisno na najmanje dvije osnove binarnih haploskupina, a možda i na trećoj. U svim haploskupinama kromosoma J1 koje su pregledane, uključivši i njegove poznate a malobrojne pod-haploskupine, nađen je fiksan dužinski uzorak parcijalnoga alela. U alternativnom M405 povezanom s R1b3 definiranoj pod-haploskupini nađene su i DYS458.0 i DYS458.2 alelne klase. Pojedinačni kromosom također se mogao svrstati u R1b3-M269*(xM405) klasu. Fizički smještaj djelomične nsercije/delecije u normalnom slijedu tetramera jasno se razlikovao u kontekstu svake haploskupine. Zaključak: Iako neobični aleli DYS458.2 pružaju korisne informacije, prilikom zaključivanja o haploskupinskoj osnovi i uobičajenom nasljeđivanju potrebne su dodatne informacije o drugim vezanim polimorfnim lokusima.Aim: To determine the human Y-chromosome haplogroup backgrounds of non-consensus DYS458.2 short tandem repeat alleles and evaluate their phylogenetic substructure and frequency in representative samples from the Middle East, Europe, and Pakistan. Methods: Molecular characterization of lineages was achieved using a combination of Y-chromosome haplogroup defining binary polymorphisms and up to 37 short tandem repeat loci, including DYS388 to construct haplotypes. DNA sequencing of the DYS458 locus and median-joining network analyses were used to evaluate Y-chromosome lineages displaying the DYS458.2 motif. Results: We showed that the DYS458.2 allelic innovation arose independently on at least two distinctive binary haplogroup backgrounds and possibly a third as well. The partial allele length pattern was fixed in all haplogroup J1 chromosomes examined, including its known rare sub-haplogroups. Within the alternative R1b3 associated M405 defined sub-haplogroup, both DYS458.0 and DYS458.2 allele classes occurred. A single chromosome also allocated to the R1b3-M269*(xM405) classification. The physical position of the partial insertion/deletion occurrence within the normal tetramer tract differed distinctly in each haplogroup context. Conclusions: While unusual DYS458.2 alleles are informative, additional information for other linked polymorphic loci is required when using such non-conforming alleles to infer haplogroup background and common ancestry

    The initial peopling of the Americas: a growing number of founding mitochondrial genomes from Beringia

    Get PDF
    Pan-American mitochondrial DNA (mtDNA) haplogroup C1 has been recently subdivided into three branches, two of which (C1b and C1c) are characterized by ages and geographical distributions that are indicative of an early arrival from Beringia with Paleo-Indians. In contrast, the estimated ages of C1d—the third subset of C1—looked too young to fit the above scenario. To define the origin of this enigmatic C1 branch, we completely sequenced 63 C1d mitochondrial genomes from a wide range of geographically diverse, mixed, and indigenous American populations. The revised phylogeny not only brings the age of C1d within the range of that of its two sister clades, but reveals that there were two C1d founder genomes for Paleo-Indians. Thus, the recognized maternal founding lineages of Native Americans are at least 15, indicating that the overall number of Beringian or Asian founder mitochondrial genomes will probably increase extensively when all Native American haplogroups reach the same level of phylogenetic and genomic resolution as obtained here for C1d.Fil: Perego, Ugo A.. Soreson Molecular Genealogy Foundation; Estados Unidos. Università di Pavia. Dipartimento di Genetica e Microbiologia; ItaliaFil: Angerhofer, Norman. Soreson Molecular Genealogy Foundation; Estados UnidosFil: Pala, Maria. Università di Pavia. Dipartimento di Genetica e Microbiologia; ItaliaFil: Olivieri, Anna. Università di Pavia. Dipartimento di Genetica e Microbiologia; ItaliaFil: Lancioni, Hovirag. Universita Di Perugia; ItaliaFil: Kashani, Baharak Hooshiar. Università di Pavia. Dipartimento di Genetica e Microbiologia; ItaliaFil: Carossa, Valeria. Università di Pavia. Dipartimento di Genetica e Microbiologia; ItaliaFil: Ekins, Jayne E.. Soreson Molecular Genealogy Foundation; Estados UnidosFil: Gómez Carballa, Alberto. Universidad de Santiago de Compostela; EspañaFil: Huber, Gabriela. Universidad de Innsbruck; AustriaFil: Zimmermann, Bettina. Universidad de Innsbruck; AustriaFil: Corach, Daniel. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Servicio de Huellas Digitales Genéticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Babudri, Nora. Universita Di Perugia; ItaliaFil: Panara, Fausto. Universita Di Perugia; ItaliaFil: Myres, Natalie M.. Soreson Molecular Genealogy Foundation; Estados UnidosFil: Parson, Walther. Universidad de Innsbruck; AustriaFil: Semino, Ornella. Università di Pavia. Dipartimento di Genetica e Microbiologia; ItaliaFil: Salas, Antonio. Universidad de Santiago de Compostela; EspañaFil: Woodward, Scott R.. Soreson Molecular Genealogy Foundation; Estados UnidosFil: Achilli, Alessandro. Università di Pavia. Dipartimento di Genetica e Microbiologia; Italia. Universita Di Perugia; ItaliaFil: Torroni, Antonio. Università di Pavia. Dipartimento di Genetica e Microbiologia; Itali

    The coming of the Greeks to Provence and Corsica: Y-chromosome models of archaic Greek colonization of the western Mediterranean

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The process of Greek colonization of the central and western Mediterranean during the Archaic and Classical Eras has been understudied from the perspective of population genetics. To investigate the Y chromosomal demography of Greek colonization in the western Mediterranean, Y-chromosome data consisting of 29 YSNPs and 37 YSTRs were compared from 51 subjects from Provence, 58 subjects from Smyrna and 31 subjects whose paternal ancestry derives from Asia Minor Phokaia, the ancestral embarkation port to the 6<sup>th </sup>century BCE Greek colonies of Massalia (Marseilles) and Alalie (Aleria, Corsica).</p> <p>Results</p> <p>19% of the Phokaian and 12% of the Smyrnian representatives were derived for haplogroup E-V13, characteristic of the Greek and Balkan mainland, while 4% of the Provencal, 4.6% of East Corsican and 1.6% of West Corsican samples were derived for E-V13. An admixture analysis estimated that 17% of the Y-chromosomes of Provence may be attributed to Greek colonization. Using the following putative Neolithic Anatolian lineages: J2a-DYS445 = 6, G2a-M406 and J2a1b1-M92, the data predict a 0% Neolithic contribution to Provence from Anatolia. Estimates of colonial Greek vs. indigenous Celto-Ligurian demography predict a maximum of a 10% Greek contribution, suggesting a Greek male elite-dominant input into the Iron Age Provence population.</p> <p>Conclusions</p> <p>Given the origin of viniculture in Provence is ascribed to Massalia, these results suggest that E-V13 may trace the demographic and socio-cultural impact of Greek colonization in Mediterranean Europe, a contribution that appears to be considerably larger than that of a Neolithic pioneer colonization.</p

    Regional Differences in the Accumulation of SNPs on the Male-Specific Portion of the Human Y Chromosome Replicate Autosomal Patterns: Implications for Genetic Dating.

    Get PDF
    Factors affecting the rate and pattern of the mutational process are being identified for human autosomes, but the same relationships for the male specific portion of the Y chromosome (MSY) are not established. We considered 3,390 mutations occurring in 19 sequence bins identified by sequencing 1.5 Mb of the MSY from each of 104 present-day chromosomes. The occurrence of mutations was not proportional to the amount of sequenced bases in each bin, with a 2-fold variation. The regression of the number of mutations per unit sequence against a number of indicators of the genomic features of each bin, revealed the same fundamental patterns as in the autosomes. By considering the sequences of the same region from two precisely dated ancient specimens, we obtained a calibrated region-specific substitution rate of 0.716 × 10-9/site/year. Despite its lack of recombination and other peculiar features, the MSY then resembles the autosomes in displaying a marked regional heterogeneity of the mutation rate. An immediate implication is that a given figure for the substitution rate only makes sense if bound to a specific DNA region. By strictly applying this principle we obtained an unbiased estimate of the antiquity of lineages relevant to the genetic history of the human Y chromosome. In particular, the two deepest nodes of the tree highlight the survival, in Central-Western Africa, of lineages whose coalescence (291 ky, 95% C.I. 253-343) predates the emergence of anatomically modern features in the fossil record

    Molecular Dissection of the Basal Clades in the Human Y Chromosome Phylogenetic Tree

    Get PDF
    One hundred and forty-six previously detected mutations were more precisely positioned in the human Y chromosome phylogeny by the analysis of 51 representative Y chromosome haplogroups and the use of 59 mutations from literature. Twenty-two new mutations were also described and incorporated in the revised phylogeny. This analysis made it possible to identify new haplogroups and to resolve a deep trifurcation within haplogroup B2. Our data provide a highly resolved branching in the African-specific portion of the Y tree and support the hypothesis of an origin in the north-western quadrant of the African continent for the human MSY diversity

    Y-chromosome Short Tandem Repeat Intermediate Variant Alleles DYS392.2, DYS449.2, and DYS385.2 Delineate New Phylogenetic Substructure in Human Y-chromosome Haplogroup Tree

    Get PDF
    Aim To determine the human Y-chromosome haplogroup backgrounds of intermediate-sized variant alleles displayed by short tandem repeat (STR) loci DYS392, DYS449, and DYS385, and to valuate the potential of each intermediate variant to elucidate new phylogenetic substructure within the human Y-chromosome haplogroup tree. Methods Molecular characterization of lineages was achieved using a combination of Y-chromosome haplogroup defining binary polymorphisms and up to 37 short tandem repeat loci. DNA sequencing and medianjoining network analyses were used to evaluate Y-chromosome lineages displaying intermediate variant alleles. Results We show that DYS392.2 occurs on a single haplogroup background, specifically I1*-M253, and likely represents a new phylogenetic subdivision in this European haplogroup. Intermediate variants DYS449.2 and DYS385.2 both occur on multiple haplogroup backgrounds, and when evaluated within specific haplogroup contexts, delineate new phylogenetic substructure, with DYS449.2 being informative within haplogroup A-P97 and DYS385.2 in haplogroups D-M145, E1b1a-M2, and R1b*-M343. Sequence analysis of variant alleles observed within the various haplogroup backgrounds showed that the nature of the intermediate variant differed, confirming the mutations arose independently. Conclusions Y-chromosome short tandem repeat intermediate variant alleles, while relatively rare, typically occur on multiple haplogroup backgrounds. This distribution indicates that such mutations arise at a rate generally intermediate to those of binary markers and STR loci. As a result, intermediate-sized Y-STR variants can reveal phylogenetic substructure within the Y-chromosome phylogeny not currently detected by either binary or Y-STR markers alone, but only when such variants are evaluated within a haplogroup context

    The emergence of Y-chromosome haplogroup J1e among Arabic-speaking populations.

    No full text
    Advance online publication 104 october 2009Haplogroup J1 is a prevalent Y-chromosome lineage within the Near East. We report the frequency and YSTR diversity data for its major sub-clade (J1e). The overall expansion time estimated from 453 chromosomes is 10 000 years. Moreover, the previously described J1 (DYS388=13) chromosomes, frequently found in the Caucasus and eastern Anatolian populations, were ancestral to J1e and displayed an expansion time of 9000 years. For J1e, the Zagros/Taurus mountain region displays the highest haplotype diversity, although the J1e frequency increases toward the peripheral Arabian Peninsula. The southerly pattern of decreasing expansion time estimates is consistent with the serial drift and founder effect processes. The first such migration is predicted to have occurred at the onset of the Neolithic, and accordingly J1e parallels the establishment of rain-fed agriculture and semi-nomadic herders throughout the Fertile Crescent. Subsequently, J1e lineages might have been involved in episodes of the expansion of pastoralists into arid habitats coinciding with the spread of Arabic and other Semitic-speaking population

    Maximum parsimony tree showing the phyletic relationships of 104 chromosomes.

    No full text
    <p>The individual Id's (as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0134646#pone.0134646.s005" target="_blank">S1 Table</a>) are reported on the right, aligned with the corresponding branch. Clades corresponding to major haplogroups are bracketed or indicated individually at the far right, following the nomenclature of van Oven et al. [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0134646#pone.0134646.ref064" target="_blank">64</a>](note the difference with ref. [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0134646#pone.0134646.ref004" target="_blank">4</a>]). Branches are numbered (in italics) and mutations assigned to them are listed in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0134646#pone.0134646.s006" target="_blank">S2 Table</a>. Note that the tree is unrooted and variants defining branch 0 are identified solely as different from the reference sequence. The clade corresponding to Hg E1b1b-M35 has been collapsed since it is discussed in detail in a dedicated paper [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0134646#pone.0134646.ref065" target="_blank">65</a>].</p

    Dated tree including 104 subjects plus the Ust'-Ishim [27] and Loschbour [28] specimens (arrowed).

    No full text
    <p>These latter were used as calibration points, by means of normally distributed priors with means 45,000 and 7,205 years ago, respectively. The 95% C.I.'s for the age of each node are represented as grey bars. The clade corresponding to Hg E1b1b-M35 has been collapsed since it is discussed in detail in a dedicated paper [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0134646#pone.0134646.ref065" target="_blank">65</a>]. Groups of branches discussed in the text and in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0134646#pone.0134646.t004" target="_blank">Table 4</a> are shadowed: a) deep branches; b) terminal branches with rho < = 20; c) terminal branches with length < = 10 mutations. Note that the positioning of the root is the result of the Bayesian process and not of the assessment of ancestral/derived states in branch 0 based on an outgroup (e.g. the chimpanzee).</p
    corecore