67 research outputs found

    Fin Spine Bone Resorption in Atlantic Bluefin Tuna, Thunnus thynnus, and Comparison between Wild and Captive-Reared Specimens

    Get PDF
    Bone resorption in the first spine of the first dorsal fin of Atlantic bluefin tuna (ABFT) has long been considered for age estimation studies. In the present paper spine bone resorpion was assessed in wild (aged 1 to 13 years) and captive-reared (aged 2 to 11 years) ABFT sampled from the Mediterranean Sea. Total surface (TS), solid surface (SS) and reabsorbed surface (RS) were measured in spine transverse sections in order to obtain proportions of SS and RS. The spine section surface was found to be isometrically correlated to the fish fork length by a power equation. The fraction of solid spine bone progressively decreased according to a logarithmic equation correlating SS/TS to both fish size and age. The values ranged from 57% in the smallest examined individuals to 37% in the largest specimens. This phenomenon was further enhanced in captive-reared ABFT where SS/TS was 22% in the largest measured specimen. The difference between the fraction of SS of wild and captive-reared ABFT was highly significant. In each year class from 1- to 7-year-old wild specimens, the fraction of spine reabsorbed surface was significantly higher in specimens collected from March to May than in those sampled during the rest of the year. In 4-year-old fish the normal SS increase during the summer did not occur, possibly coinciding with their first sexual maturity. According to the correlations between SS/TS and age, the rate of spine bone resorption was significantly higher, even almost double, in captive-reared specimens. This could be attributed to the wider context of systemic dysfunctions occurring in reared ABFT, and may be related to a number of factors, including nutritional deficiencies, alteration of endocrine profile, cortisol-induced stress, and loss of spine functions during locomotion in rearing conditions.Versión del editor4,411

    Tamoxifen enhances the cytotoxic effects of nelfinavir in breast cancer cells

    Get PDF
    Introduction: The HIV protease inhibitor nelfinavir is currently under investigation as a new anti-cancer drug. Several studies have shown that nelfinavir induces cell cycle arrest, endoplasmic reticulum stress, autophagy, and apoptosis in cancer cells. In the present article, the effect of nelfinavir on human breast cancer cells is examined and potential combination treatments are investigated. Methods: The effects of nelfinavir and tamoxifen on the human breast cancer cell lines MCF7, T47 D, MDA-MB-453, and MDA-MB-435 were tested by analysing their influence on cell viability (via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay), apoptosis (annexin binding, poly(ADP-ribose) polymerase cleavage), autophagy (autophagy marker light chain 3B expression), endoplasmic reticulum stress (binding protein and activating transcription factor 3 expression), and the occurrence of oxidative stress (intracellular glutathione level). Results: Nelfinavir induced apoptosis in all four breast cancer cell lines tested, although the extent of autophagy and endoplasmic reticulum stress varied among the cell lines. The concentration of nelfinavir needed for an efficient induction of apoptosis in breast cancer cells could be reduced from 15 mu g/ml to 6 mu g/ml when combined with tamoxifen. At a concentration of 6 mu g/ml, tamoxifen substantially enhanced the endoplasmic reticulum stress reaction in those cell lines that responded to nelfinavir with binding protein (BiP) upregulation (MCF7, T47D), and enhanced autophagy in cell lines that responded to nelfinavir treatment with autophagy marker light chain 3B upregulation (MDA-MB-453). Although tamoxifen has been described to be able to induce oxidative stress at concentrations similar to those applied in this study (6 mu g/ml), we observed that nelfinavir but not tamoxifen reduced the intracellular glutathione level of breast cancer cells within hours of application by up to 32%, suggesting the induction of oxidative stress was an early event and an additional cause of the apoptosis induced by nelfinavir. Conclusions: The results demonstrate that nelfinavir may be an effective drug against breast cancer and could be combined with tamoxifen to enhance its efficacy against breast cancer cells. Moreover, the cytotoxic effect of a tamoxifen and nelfinavir combination was independent of the oestrogen receptor status of the analysed breast cancer cells, suggesting a potential benefit of a combination of these two drugs even in patients with no hormone-responsive tumours. We therefore recommend that clinical studies on nelfinavir with breast cancer patients should include this drug combination to analyse the therapeutic efficacy as well as the safety and tolerability of this potential treatment option

    Yolk utilization and growth during the early larval life of the Silver Perch, Bidyanus bidyanus (Mitchell, 1838)

    Get PDF
    The aim of this research was to investigate the yolk sac and oil globule utilization by silver perch (Bidyanus bidyanus) larvae produced from domesticated broodfish. The larvae were kept unfed in the holding tank, sampled, and investigated by image analysis software to determine various characteristics, such as the diameters of ova, water-hardened eggs, yolk-sac, oil globules, and the total length of larvae. The research illustrated that, with the exception of oil globule diameter, all other morphometric parameters were significantly lower (P < 0.05) when compared to the larvae from the wild broodfish. The yolk sac was completely absorbed at 96 h post-hatching (hph) and the oil globule was visible until 240 hph. The larvae exhibited predatory movements and tried to catch rotifer at 4 days post hatching (dph). However, the onset of feeding took place at 5 dph, while 100% of feeding occurred at 6 dph. During the first 96 h (h), larvae grew significantly faster than the next 144 h. Larvae encountered low mortalities (<10%) during the first 96 hph, before increasing significantly in the next 24 h and no unfed larvae survived post 240 h. The results also suggested that the exogenous feed should be available at 96 hph, which is well after the yolk sac is completely depleted. In addition, although most of eggs and larval performance from domesticated broodfish were inferior compared to the wild one, it has larger oil globule that could make longer of its mixed feeding period and therefore could have better in viability

    Macrophage origin limits functional plasticity in helminth-bacterial co-infection

    Get PDF
    Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2) similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell

    Swimming physiology of European silver eels (Anguilla anguilla L.): energetic costs and effects on sexual maturation and reproduction

    Get PDF
    The European eel migrates 5,000–6,000 km to the Sargasso Sea to reproduce. Because they venture into the ocean in a pre-pubertal state and reproduce after swimming for months, a strong interaction between swimming and sexual maturation is expected. Many swimming trials have been performed in 22 swim tunnels to elucidate their performance and the impact on maturation. European eels are able to swim long distances at a cost of 10–12 mg fat/km which is 4–6 times more efficient than salmonids. The total energy costs of reproduction correspond to 67% of the fat stores. During long distance swimming, the body composition stays the same showing that energy consumption calculations cannot be based on fat alone but need to be compensated for protein oxidation. The optimal swimming speed is 0.61–0.67 m s−1, which is ~60% higher than the generally assumed cruise speed of 0.4 m s−1 and implies that female eels may reach the Sargasso Sea within 3.5 months instead of the assumed 6 months. Swimming trials showed lipid deposition and oocyte growth, which are the first steps of sexual maturation. To investigate effects of oceanic migration on maturation, we simulated group-wise migration in a large swim-gutter with seawater. These trials showed suppressed gonadotropin expression and vitellogenesis in females, while in contrast continued sexual maturation was observed in silver males. The induction of lipid deposition in the oocytes and the inhibition of vitellogenesis by swimming in females suggest a natural sequence of events quite different from artificial maturation protocols

    Reproduction, Broodstock Management, and Spawning in Captive Atlantic Bluefin Tuna

    No full text
    Understanding the reproductive biology of Atlantic bluefin tuna (ABFT) is important to both managing its fishery and developing hatchery technologies to close its life cycle in aquaculture. Globally, ABFT is comprised of two populations, the eastern and western stocks, with known breeding areas in the Mediterranean Sea and the Gulf of Mexico, respectively. Gametogenesis takes place during spring and early summer, and spawning usually occurs from May to July, coinciding with the rise of water temperature. Females display an asynchronous ovarian development, typical of a batch spawner. Comparing the endocrine-reproductive cycle in wild and captive ABFT led to the development of a hormone-based therapy to induce spawning in captive broodstock. While captivity affects gametogenesis in ABFT, at least some of the captive fish spawn spontaneously, which can be enhanced and prolonged using hormonal induction. Massive spawning of captive ABFT enabled the first aquaculture production of marketable fish, demonstrating the biological feasibility of this industry. Current research on hormonal regulation of its puberty may lead to the use of smaller ABFT broodstock, simplifying their husbandry and management. This, together with the establishment of land-based broodstock operations, will enable efficient and cost-effective on-demand and year-round production of ABFT seeds to drive the consistent farming of this fis

    Calling activity and calls' temporal features inform about fish reproductive condition and spawning in three cultured Sciaenidae species.

    Full text link
    Although many fish species are vocal, the use of fish sounds for aquaculture management and wild population protection has not received much attention. In this study, sound production of three members of the Sciaenidae family was monitored before and during spawning in aquaculture facilities. The species examined include the meagre Argyrosomus regius, the shi dum Umbrina cirrosa and red drum Sciaenops ocellatus. Red drum reproduces spontaneously in captivity, whereas shi drum and meagre often require hormonal stimulation using gonadotropin releasing hormone agonist (GnRHa) for the induction of oocyte maturation, ovulation and spawning. In all three species, a clear increase in calling activity was detected during spawning nights, when longer sounds with a higher number of faster repeated pulses were emitted. Changes of call temporal features could be related to histological changes in the sonic muscles. After GnRHa treatment and during spawning, meagre sonic fibres were wider and the ratio of sarcoplasmic reticulum to myofibril cross-sectional area was higher. The correlation of calling activity with spawning events opens up the possibility of using the monitoring of calling activity and of call temporal features as tools for evaluating the reproductive state of different sciaenid species, both in the wild and captivity

    A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images

    Full text link
    © 2019 American Association of Physicists in Medicine Purpose: Real-time image-guided adaptive radiation therapy (IGART) requires accurate marker segmentation to resolve three-dimensional (3D) motion based on two-dimensional (2D) fluoroscopic images. Most common marker segmentation methods require prior knowledge of marker properties to construct a template. If marker properties are not known, an additional learning period is required to build the template which exposes the patient to an additional imaging dose. This work investigates a deep learning-based fiducial marker classifier for use in real-time IGART that requires no prior patient-specific data or additional learning periods. The proposed tracking system uses convolutional neural network (CNN) models to segment cylindrical and arbitrarily shaped fiducial markers. Methods: The tracking system uses a tracking window approach to perform sliding window classification of each implanted marker. Three cylindrical marker training datasets were generated from phantom kilovoltage (kV) and patient intrafraction images with increasing levels of megavoltage (MV) scatter. The cylindrical shaped marker CNNs were validated on unseen kV fluoroscopic images from 12 fractions of 10 prostate cancer patients with implanted gold fiducials. For the training and validation of the arbitrarily shaped marker CNNs, cone beam computed tomography (CBCT) projection images from ten fractions of seven lung cancer patients with implanted coiled markers were used. The arbitrarily shaped marker CNNs were trained using three patients and the other four unseen patients were used for validation. The effects of full training using a compact CNN (four layers with learnable weights) and transfer learning using a pretrained CNN (AlexNet, eight layers with learnable weights) were analyzed. Each CNN was evaluated using a Precision-Recall curve (PRC), the area under the PRC plot (AUC), and by the calculation of sensitivity and specificity. The tracking system was assessed using the validation data and the accuracy was quantified by calculating the mean error, root-mean-square error (RMSE) and the 1st and 99th percentiles of the error. Results: The fully trained CNN on the dataset with moderate noise levels had a sensitivity of 99.00% and specificity of 98.92%. Transfer learning of AlexNet resulted in a sensitivity and specificity of 99.42% and 98.13%, respectively, for the same datasets. For the arbitrarily shaped marker CNNs, the sensitivity was 98.58% and specificity was 98.97% for the fully trained CNN. The transfer learning CNN had a sensitivity and specificity of 98.49% and 99.56%, respectively. The CNNs were successfully incorporated into a multiple object tracking system for both cylindrical and arbitrarily shaped markers. The cylindrical shaped marker tracking had a mean RMSE of 1.6 ± 0.2 pixels and 1.3 ± 0.4 pixels in the x- and y-directions, respectively. The arbitrarily shaped marker tracking had a mean RMSE of 3.0 ± 0.5 pixels and 2.2 ± 0.4 pixels in the x- and y-directions, respectively. Conclusion: With deep learning CNNs, high classification performances on unseen patient images were achieved for both cylindrical and arbitrarily shaped markers. Furthermore, the application of CNN models to intrafraction monitoring was demonstrated using a simple tracking system. The results demonstrate that CNN models can be used to track markers without prior knowledge of the marker properties or an additional learning period

    Reproductive development, GnRHa-induced spawning and egg quality of wild meagre (Argyrosomus regius) acclimatised to captivity

    Full text link
    The objective of the study was to acclimatise wild-caught meagre (Argyrosomus regius) to captivity to produce viable eggs for aquaculture production. Twelve meagre (3 males and 9 females, mean weight = 20 ± 7 kg) were caught and transported to a land-based facility on 26 October 2006. During, March to June 2007, all three males were spermiating and five of the nine females were in vitellogenesis with mean maximum oocyte diameter ≥550 μm. No spontaneous spawning was observed. Two hormone treatments, either a single injection of gonadotropin-releasing hormone agonist (GnRHa, 20 μg kg−1 for females and 10 μg kg−1 for males) or a slow-release implant loaded with the same GnRHa (50 μg kg−1 for females and 25 μg kg−1 for males), were used to induce spawning on three different dates on 26 March 2007, 4 May 2007 and 18 April 2008. From each spawning event, the following parameters were determined: fecundity, number of floating eggs, egg size, fertilisation and hatching success, unfed larval survival, and proximal composition and fatty acid profile of the eggs. In 2007, two females that were injected on 26 March and 4 May spawned a total of 5 times producing 9,019,300 floating eggs and a relative fecundity of 198,200 eggs kg−1 and two different females that were implanted on the same dates spawned 14 times producing 12,430,000 floating eggs and a relative fecundity of 276,200 eggs kg−1. In 2008, a pair that was implanted spawned five times producing a total of 10,211,900 floating eggs and a relative fecundity of 527,380 eggs kg−1. The latency period was 48–72 h. Parameters were compared between hormone treatments, date of hormone induction and parents determined by microsatellites. Percentage hatch and egg size were 70 ± 0.3% and 0.99 ± 0.02 mm, respectively, for GnRHa-implanted fish and were significantly higher (P < 0.05) compared to 30 ± 0.3% and 0.95 ± 0.03 mm, respectively, for injected fish. Few differences were observed in proximal composition and fatty acid profile and for all spawns mean (% dry weight) lipid content was 17.3 ± 3.0%, carbohydrate was 4.4 ± 1.9% and protein was 31.5 ± 6.4% and the essential fatty acids: Arachidonic acid (ARA, 20:4n-6) ranged between 0.9 and 1% (of total fatty acids), eicosapentaenoic acid (EPA 20:5n-3) 7.7–10.4% and docosahexaenoic acid (DHA 22:6n-3), 28.6–35.4%. All good quality spawns were obtained in the second and/or third spawn after GnRHa treatment, whereas all bad quality spawns were obtained either on the first spawn or after the fifth spawn. Both spawning protocols gave commercially viable (1,000,000+) numbers of good quality eggs that could form the basis of a hatchery production
    corecore