2,295 research outputs found

    Thermodynamic properties of solid palladium-silver alloys and other alloys are investigated by torsion-effusion technique

    Get PDF
    Vapor pressure data obtained by the torsion-effusion method provides the thermodynamic properties of several transition-metal alloy systems. The vapor pressure of silver over solid silver and over palladium-silver alloys was measured and the results were more accurate than those found previously by other techniques

    Monolithic Solid Oxide Fuel Cell development

    Get PDF
    The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source

    INFLAMMATORY GENE EXPRESSION IN WOMEN DIAGNOSED WITH POLYCYSTIC OVARIAN SYNDROME

    Get PDF
    Polycystic ovarian syndrome (PCOS) is a common endocrine disorder in women of reproductive age. The pathophysiology of PCOS has conventionally thought to originate from androgen excess. However, recent evidence suggests that androgen excess is a downstream consequence to inflammatory dysregulation and subsequent metabolic abnormalities. Inflammatory mRNA gene expression of TNFa and IL-1ß in mononuclear cells isolated from women diagnosed with PCOS was explored using qPCR. Additionally, the correlations between body mass index (BMI) and fasting glucose on mRNA expression of TNFa and IL-1ß were explored. mRNA expression of both TNFa and IL-1ß were found to be significantly higher in PCOS subjects (P\u3c0.01). BMI was found to significantly increase mRNA expression of TNFa and IL-1ß (PP\u3c0.05)

    Z-Selective Homodimerization of Terminal Olefins with a Ruthenium Metathesis Catalyst

    Get PDF
    The cross-metathesis of terminal olefins using a novel ruthenium catalyst results in excellent selectivity for the Z-olefin homodimer. The reaction was found to tolerate a large number of functional groups, solvents, and temperatures while maintaining excellent Z-selectivity, even at high reaction conversions

    Z-Selectivity in Olefin Metathesis with Chelated Ru Catalysts: Computational Studies of Mechanism and Selectivity

    Get PDF
    The mechanism and origins of Z-selectivity in olefin metathesis with chelated Ru catalysts were explored using density functional theory. The olefin approaches from the “side” position of the chelated Ru catalysts, in contrast to reactions with previous unchelated Ru catalysts that favor the bottom-bound pathway. Steric repulsions between the substituents on the olefin and the N-substituent on the N-heterocyclic carbene ligand lead to highly selective formation of the Z product

    Amphioxus SYCP1 : a case of retrogene replacement and co-option of regulatory elements adjacent to the ParaHox cluster

    Get PDF
    MGG was supported by the University of St Andrews School of Biology Biotechnology and Biological Sciences Research Council DTG and the Wellcome Trust ISSF. Work in the authors’ laboratory is also supported by the Leverhulme Trust.Retrogenes are formed when an mRNA is reverse transcribed and re-inserted into the genome in a location unrelated to the original locus. If this retrocopy inserts into a transcriptionally favourable locus and is able to carry out its original function, it can, in rare cases, lead to retrogene replacement. This involves the original, often multi-exonic, parental copy being lost whilst the newer single-exon retrogene copy ‘replaces’ the role of the ancestral parent gene. One example of this is amphioxus SYCP1, a gene that encodes a protein used in synaptonemal complex formation during meiosis, and which offers the opportunity to examine how a retrogene evolves after the retrogene replacement event. SYCP1 genes exist as large multi-exonic genes in most animals. AmphiSYCP1, however, contains a single coding exon of ~3200bp and has inserted next to the ParaHox cluster of amphioxus, whilst the multi-exonic ancestral parental copy has been lost. Here, we show that AmphiSYCP1 has not only replaced its parental copy, but has evolved additional regulatory function by co- opting a bidirectional promoter from the nearby AmphiCHIC gene. AmphiSYCP1 has also evolved a de novo, multi-exonic 5’untranslated region that displays distinct regulatory states, in the form of two different isoforms, and has evolved novel expression patterns during amphioxus embryogenesis in addition to its ancestral role in meiosis. Absence of ParaHox-like expression of AmphiSYCP1, despite its proximity to the ParaHox cluster, also suggests this gene is not influenced by any potential pan-cluster regulatory mechanisms, which are seemingly restricted to only the ParaHox genes themselves.Publisher PDFPeer reviewe

    On the motion of hairy black holes in Einstein-Maxwell-dilaton theories

    Full text link
    Starting from the static, spherically symmetric black hole solutions in massless Einstein-Maxwell-dilaton (EMD) theories, we build a "skeleton" action, that is, we phenomenologically replace black holes by an appropriate effective point particle action, which is well suited to the formal treatment of the many-body problem in EMD theories. We find that, depending crucially on the value of their scalar cosmological environment, black holes can undergo steep "scalarization" transitions, inducing large deviations to the general relativistic two-body dynamics, as shown, for example, when computing the first post-Keplerian Lagrangian of EMD theories
    corecore