11 research outputs found

    Analytical development to support manufacturing of a sustainable vaccine against Invasive Nontyphoidal Salmonellosis

    Get PDF
    GVGH is developing a candidate trivalent Salmonella vaccine to fight invasive nontyphoidal Salmonellosis (iNTS) and typhoid fever, especially aimed for sub-Saharan Africa to impact disease burden and to reduce anti-microbial resistance spread. This trivalent vaccine may be the only viable option for a sustainable iNTS vaccine in sub-Saharan Africa over the separate administration of Typhoid Conjugate Vaccines (TCV) and a vaccine against iNTS. GVGH generated the iNTS-TCV formulation by combining the GMMA technology for the iNTS components, S. Typhimurium (STm) and S. Enteritidis (SEn) GMMA adsorbed on Alhydrogel, and the Vi-CRM197 glycoconjugate, originally developed by GVGH and recently WHO prequalified as TCV TYPHIBEV by Biological E Ltd (Hyderabad, India). A set of analytical methods to support the vaccine lot release and characterization have been developed by GVGH. In particular, to quantify the key active ingredients of iNTS components a competitive ELISA-based method (FAcE, Formulated Alhydrogel competitive ELISA assay) has been setup and characterized in terms of specificity, accuracy and precision. Vi component is instead characterized by means of HPAEC-PAD method, able to specifically identify and quantify the total polysaccharide in the final drug product. With regard to safety assessment, a Monocyte Activation Test (MAT) has been developed as to monitor the intrinsic pyrogenicity of GMMA-based vaccines and applied as surveillance test for the Phase 1 clinical lot, with the plan to set release criteria based on clinical experience. In vivo potency assay has been set to characterize the immunogenicity of vaccine lots in comparison to freshly formulated material at the time of release and during real-time stability. A significant antibody response to each of the active ingredients of the trivalent vaccine is raised in mice and assessed by Parallel Line Assay. Overall, the applied analytical panel and the results support the development of an iNTS-TCV vaccine as a viable option for a sustainable iNTS vaccine in sub-Saharan Africa

    Mucosal barrier and Th2 immune responses are enhanced by dietary inulin in pigs infected with <i>trichuris suis</i>

    Get PDF
    Diet composition may play a crucial role in shaping host immune responses and commensal gut microbiota populations. Bioactive dietary components, such as inulin, have been extensively studied for their bioactive properties, particularly in modulating gut immune function and reducing inflammation. It has been shown that colonization with gastrointestinal parasitic worms (helminths) may alleviate chronic inflammation through promotion of T-helper cell type (Th) 2 and T-regulatory immune responses and alterations in the gut microbiome. In this study, we investigated if dietary inulin could modulate mucosal immune function in pigs during colonization with the porcine whipworm Trichuris suis. T. suis infection induced a typical Th2-biased immune response characterized by transcriptional changes in Th2- and barrier function-related genes, accompanied by intestinal remodeling through increased epithelial goblet and tuft cell proliferation. We observed that inulin also up-regulated Th2-related immune genes (IL13, IL5), and suppressed Th1-related pro-inflammatory genes (IFNG, IL1A, IL8) in the colon. Notably, inulin augmented the T. suis-induced responses with increased transcription of key Th2 and mucosal barrier genes (e.g., IL13, TFF3), and synergistically suppressed pro-inflammatory genes, such as IFNG and CXCL9. 16S rRNA sequencing of proximal colon digesta samples revealed that inulin supplementation reduced the abundance of bacterial phyla linked to inflammation, such as Proteobacteria and Firmicutes, and simultaneously increased Actinobacteria and Bacteroidetes. Interestingly, pigs treated with both inulin and T. suis displayed the highest Bacteroidetes: Firmicutes ratio and the lowest gut pH, suggesting an interaction of diet and helminth infection that stimulates the growth of beneficial bacterial species. Overall, our data demonstrate that T. suis infection and inulin co-operatively enhance anti-inflammatory immune responses, which is potentially mediated by changes in microbiota composition. Our results highlight the intricate interactions between diet, immune function and microbiota composition in a porcine helminth infection model. This porcine model should facilitate further investigations into the use of bioactive diets as immunomodulatory mediators against inflammatory conditions, and how diet and parasites may influence gut health

    Development of a Monocyte Activation Test as an Alternative to the Rabbit Pyrogen Test for Mono- and Multi-Component Shigella GMMA-Based Vaccines

    No full text
    Generalised modules for membrane antigens (GMMA)-based vaccines comprise the outer membrane from genetically modified Gram-negative bacteria containing membrane proteins, phospholipids and lipopolysaccharides. Some lipoproteins and lipopolysaccharides are pyrogens; thus, GMMA-based vaccines are intrinsically pyrogenic. It is important to control the pyrogenic content of biological medicines, including vaccines, to prevent adverse reactions such as febrile responses. The rabbit pyrogen test (RPT) and bacterial endotoxin test (BET) are the most commonly employed safety assays used to detect pyrogens. However, both tests are tailored for detecting pyrogenic contaminants and have considerable limitations when measuring the pyrogen content of inherently pyrogenic products. We report the adaptation of the monocyte activation test (MAT) as an alternative to the RPT for monitoring the pyrogenicity of Shigella GMMA-based vaccines. The European Pharmacopoeia endorses three MAT methods (A–C). Of these, method C, the reference lot comparison test, was identified as the most suitable. This method was evaluated with different reference materials to ensure parallelism and consistency for a mono- and multi-component Shigella GMMA vaccine. We demonstrate the drug substance as a promising reference material for safety testing of the matched drug product. Our results support the implementation of MAT as an alternative to the RPT and use of the defined parameters can be extended to GMMA-based vaccines currently in development, aiding vaccine batch release

    Parasite-Probiotic Interactions in the Gut:<i>Bacillus</i> sp. and <i>Enterococcus faecium</i> Regulate Type-2 Inflammatory Responses and Modify the Gut Microbiota of Pigs During Helminth Infection

    No full text
    Dietary probiotics may enhance gut health by directly competing with pathogenic agents and through immunostimulatory effects. These properties are recognized in the context of bacterial and viral pathogens, but less is known about interactions with eukaryotic pathogens such as parasitic worms (helminths). In this study we investigated whether two probiotic mixtures (comprised of Bacillus amyloliquefaciens, B. subtilis, and Enterococcus faecium [BBE], or Lactobacillus rhamnosus LGG and Bifidobacterium animalis subspecies Lactis Bb12 [LB]) could modulate helminth infection kinetics as well as the gut microbiome and intestinal immune responses in pigs infected with the nodular worm Oesophagostomum dentatum. We observed that neither probiotic mixture influenced helminth infection levels. BBE, and to a lesser extent LB, changed the alpha- and beta-diversity indices of the colon and fecal microbiota, notably including an enrichment of fecal Bifidobacterium spp. by BBE. However, these effects were muted by concurrent O. dentatum infection. BBE (but not LB) significantly attenuated the O. dentatum-induced upregulation of genes involved in type-2 inflammation and restored normal lymphocyte ratios in the ileo-caecal lymph nodes that were altered by infection. Moreover, inflammatory cytokine release from blood mononuclear cells and intestinal lymphocytes was diminished by BBE. Collectively, our data suggest that selected probiotic mixtures can play a role in maintaining immune homeostasis during type 2-biased inflammation. In addition, potentially beneficial changes in the microbiome induced by dietary probiotics may be counteracted by helminths, highlighting the complex inter-relationships that potentially exist between probiotic bacteria and intestinal parasites

    Outcomes in Newly Diagnosed Atrial Fibrillation and History of Acute Coronary Syndromes: Insights from GARFIELD-AF

    No full text
    BACKGROUND: Many patients with atrial fibrillation have concomitant coronary artery disease with or without acute coronary syndromes and are in need of additional antithrombotic therapy. There are few data on the long-term clinical outcome of atrial fibrillation patients with a history of acute coronary syndrome. This is a 2-year study of atrial fibrillation patients with or without a history of acute coronary syndromes

    Does sex affect anticoagulant use for stroke prevention in nonvalvular atrial fibrillation? The prospective global anticoagulant registry in the FIELD-Atrial Fibrillation.

    Get PDF
    BACKGROUND: Among patients with atrial fibrillation (AF), women are at higher risk of stroke than men. Using prospective cohort data from a large global population of patients with nonvalvular AF, we sought to identify any differences in the use of anticoagulants for stroke prevention in women and men. METHODS AND RESULTS: This was a prospective multicenter observational registry with 858 randomly selected sites in 30 countries. A total of 17 184 patients with newly diagnosed (≤6 weeks) nonvalvular AF and ≥1 additional investigator-defined stroke risk factor(s) were recruited (March 2010 to June 2013). The main outcome measure was the use of anticoagulants (vitamin K antagonists, factor Xa inhibitors, and direct thrombin inhibitors) for stroke prevention at AF diagnosis. Of 17 184 patients enrolled, 43.8% were women. More women than men were at moderate-to-high risk of stroke (CHADS2 score ≥2: 65.1% versus 54.7%). Rates of anticoagulant use were not different overall (60.9% of men versus 60.8% of women) and in patients with a CHADS2 score ≥2 (adjusted odds ratio for women versus men, 1.00; 95% confidence interval, 0.92-1.09). In patients at low risk (CHA2DS2-VASc of 0 in men and 1 in women), 41.8% of men and 41.1% of women received an anticoagulant. In patients at high risk (CHA2DS2-VASc score ≥2), 35.4% of men and 38.4% of women did not receive an anticoagulant. CONCLUSIONS: These contemporary global data show that anticoagulant use for stroke prevention is no different in men and women with nonvalvular AF. Thromboprophylaxis was, however, suboptimal in substantial proportions of men and women, with underuse in those at moderate-to-high risk of stroke and overuse in those at low risk. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
    corecore