828 research outputs found

    Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders

    Get PDF
    Multi-technique characterisation of sodium carbonate-activated blast furnace slag binders was conducted in order to determine the influence of the carbonate groups on the structural and chemical evolution of these materials. At early age (<4 days) there is a preferential reaction of Ca2+ with the CO3 2− from the activator, forming calcium carbonates and gaylussite, while the aluminosilicate component of the slag reacts separately with the sodium from the activator to form zeolite NaA. These phases do not give the high degree of cohesion necessary for development of high early mechanical strength, and the reaction is relatively gradual due to the slow dissolution of the slag under the moderate pH conditions introduced by the Na2CO3 as activator. Once the CO3 2− is exhausted, the activation reaction proceeds in similar way to an NaOH-activated slag binder, forming the typical binder phases calcium aluminium silicate hydrate and hydrotalcite, along with Ca-heulandite as a further (Ca,Al)-rich product. This is consistent with the significant gain in compressive strength and reduced porosity observed after 3 days of curing. The high mechanical strength and reduced permeability developed in these materials beyond 4 days of curing elucidate that Na2CO3-activated slag can develop desirable properties for use as a building material, although the slow early strength development is likely to be an issue in some applications. These results suggest that the inclusion of additions which could control the preferential consumption of Ca2+ by the CO3 2− might accelerate the reaction kinetics of Na2CO3-activated slag at early times of curing, enhancing the use of these materials in engineering applications

    Universal Holographic Chiral Dynamics in an External Magnetic Field

    Get PDF
    In this work we further extend the investigation of holographic gauge theories in external magnetic fields, continuing earlier work. We study the phenomenon of magnetic catalysis of mass generation in 1+3 and 1+2 dimensions, using D3/D7- and D3/D5-brane systems, respectively. We obtain the low energy effective actions of the corresponding pseudo Goldstone bosons and study their dispersion relations. The D3/D7 system exhibits the usual Gell-Mann--Oakes--Renner (GMOR) relation and a relativistic dispersion relation, while the D3/D5 system exhibits a quadratic non-relativistic dispersion relation and a modified linear GMOR relation. The low energy effective action of the D3/D5 system is related to that describing magnon excitations in a ferromagnet. We also study properties of general Dp/Dq systems in an external magnetic field and verify the universality of the magnetic catalysis of dynamical symmetry breaking.Comment: 41 pages, 11 figures, references adde

    Precise measurements of radio-frequency magnetic susceptibility in (anti)ferromagnetic materials

    Full text link
    Dynamic magnetic susceptibility, χ\chi, was studied in several intermetallic materials exhibiting ferromagnetic, antiferromagnetic and metamagnetic transitions. Precise measurements by using a 14 MHz tunnel diode oscillator (TDO) allow detailed insight into the field and temperature dependence of χ\chi. In particular, local moment ferromagnets show a sharp peak in χ(T)\chi(T) near the Curie temperature, TcT_c. The peak amplitude decreases and shifts to higher temperatures with very small applied dc fields. Anisotropic measurements of CeVSb3_3 show that this peak is present provided the magnetic easy axis is aligned with the excitation field. In a striking contrast, small moment, itinerant ferromagnets (i.e., ZrZn2_2) show a broad maximum in χ(T)\chi(T) that responds differently to applied field. We believe that TDO measurements provide a very sensitive way to distinguish between local and itinerant moment magnetic orders. Local moment antiferromagnets do not show a peak at the N\'eel temperature, TNT_N, but only a sharp decrease of χ\chi below TNT_N due to the loss of spin-disorder scattering changing the penetration depth of the ac excitation field. Furthermore, we show that the TDO is capable of detecting changes in spin order as well as metamagnetic transitions. Finally, critical scaling of χ(T,H)\chi(T,H) in the vicinity of TCT_C is discussed in CeVSb3_3 and CeAgSb2_2

    Spin diffusion at finite electric and magnetic fields

    Full text link
    Spin transport properties at finite electric and magnetic fields are studied by using the generalized semiclassical Boltzmann equation. It is found that the spin diffusion equation for non-equilibrium spin density and spin currents involves a number of length scales that explicitly depend on the electric and magnetic fields. The set of macroscopic equations can be used to address a broad range of the spin transport problems in magnetic multilayers as well as in semiconductor heterostructure. A specific example of spin injection into semiconductors at arbitrary electric and magnetic fields is illustrated

    Nanostructural characterization of geopolymers by advanced beamline techniques

    Get PDF
    This paper presents the outcomes of a series of beamline-based studies, the results of which are combined to provide a more detailed multiscale understanding of the structure and chemistry of geopolymer binders. The range of beamline-based characterization techniques which have been applied to the study of geopolymer binders is increasing rapidly; although no single technique can provide a holistic view of binder structure across all the length scales which are of importance in determining strength development and durability, the synergy achievable through the combination of multiple beamline techniques is leading to rapid advances in knowledge in this area. Studies based around beamline infrared and X-ray fluorescence microscopy, in situ and ex situ neutron pair distribution function analysis, and nano- and micro-tomography, are combined to provide an understanding of geopolymer gel chemistry, nano- and microstructure in two and three dimensions, and the influences of seeded nucleation and precursor chemistry in these key areas. The application of advanced characterization methods in recent years has brought the understanding of geopolymer chemistry from a point, not more than a decade ago, when the analysis of the detailed chemistry of the aluminosilicate binder gel was considered intractable due to its disordered (“X-ray amorphous”) nature, to the present day where the influence of key compositional parameters on nanostructure is well understood, and both gel structure and reaction kinetics can be manipulated through methods including seeding, temperature variation, and careful mix design. This paper therefore provides a review outlining the value of nanotechnology – and particularly nanostructural characterization – in the development and optimization of a new class of environmentally beneficial cements and concretes. Key engineering parameters, in particularly strength development and permeability, are determined at a nanostructural level, and so it is essential that gel structures can be analyzed and manipulated at this level; beamline-based characterization techniques are critical in providing the ability to achieve this goal

    Operator product expansion of higher rank Wilson loops from D-branes and matrix models

    Get PDF
    In this paper we study correlation functions of circular Wilson loops in higher dimensional representations with chiral primary operators of N=4 super Yang-Mills theory. This is done using the recently established relation between higher rank Wilson loops in gauge theory and D-branes with electric fluxes in supergravity. We verify our results with a matrix model computation, finding perfect agreement in both the symmetric and the antisymmetric case.Comment: 28 pages, latex; v2: minor misprints corrected, references adde

    Holographic Spectral Functions in Metallic AdS/CFT

    Full text link
    We study the holographic D3/D7 setup dual to N=4 supersymmetric Yang-Mills with quenched fundamental matter. We extend the previous analyses of conductivity and photoproduction to the case where there is a finite electric field. Due to the electric field a special region in the D7-brane geometry, labelled the singular shell, appears generically, and the computation of correlators involves a careful study of the indicial exponents both at this singular region and at the horizon. We show that there is a unique choice consistent with the known expression for the electrical conductivity found by Karch and O'Bannon. We explore the parameter space spanned by the quark mass, the baryon density and the electric field. We find a region where the conductivity and photoproduction change rapidly and trace this behavior to competing effects which manifest themselves as a crossover behavior in the probe brane embeddings.Comment: 30 pages, 13 figures, v2. references added, minor corrections mad

    On unquenched N=2 holographic flavor

    Get PDF
    The addition of fundamental degrees of freedom to a theory which is dual (at low energies) to N=2 SYM in 1+3 dimensions is studied. The gauge theory lives on a stack of Nc D5 branes wrapping an S^2 with the appropriate twist, while the fundamental hypermultiplets are introduced by adding a different set of Nf D5-branes. In a simple case, a system of first order equations taking into account the backreaction of the flavor branes is derived (Nf/Nc is kept of order 1). From it, the modification of the holomorphic coupling is computed explicitly. Mesonic excitations are also discussed.Comment: 25 pages, 4 figure

    Time-Dependent Spintronic Transport and Current-Induced Spin Transfer Torque in Magnetic Tunnel Junctions

    Full text link
    The responses of the electrical current and the current-induced spin transfer torque (CISTT) to an ac bias in addition to a dc bias in a magnetic tunnel junction are investigated by means of the time-dependent nonquilibrium Green function technique. The time-averaged current (time-averaged CISTT) is formulated in the form of a summation of dc current (dc CISTT) multiplied by products of Bessel functions with the energy levels shifted by mℏω0m\hbar \omega _{0}. The tunneling current can be viewed as to happen between the photonic sidebands of the two ferromagnets. The electrons can pass through the barrier easily under high frequencies but difficultly under low frequencies. The tunnel magnetoresistance almost does not vary with an ac field. It is found that the spin transfer torque, still being proportional to the electrical current under an ac bias, can be changed by varying frequency. Low frequencies could yield a rapid decrease of the spin transfer torque, while a large ac signal leads to both decrease of the electrical current and the spin torque. If only an ac bias is present, the spin transfer torque is sharply enhanced at the particular amplitude and frequency of the ac bias. A nearly linear relation between such an amplitude and frequency is observed.Comment: 13 pages,8 figure
    • 

    corecore