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Abstract

In this work we further extend the investigation of holographic gauge theories in external
magnetic fields, continuing earlier work. We study the phenomenon of magnetic catalysis
of mass generation in 1+3 and 1+2 dimensions, using D3/D7– and D3/D5–brane systems,
respectively. We obtain the low energy effective actions of the corresponding pseudo
Goldstone bosons and study their dispersion relations. The D3/D7 system exhibits the
usual Gell-Mann–Oakes–Renner (GMOR) relation and a relativistic dispersion relation,
while the D3/D5 system exhibits a quadratic non-relativistic dispersion relation and a
modified linear GMOR relation. The low energy effective action of the D3/D5 system is
related to that describing magnon excitations in a ferromagnet. We also study properties
of general Dp/Dq systems in an external magnetic field and verify the universality of the
magnetic catalysis of dynamical symmetry breaking.
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1 Introduction

The applications of holographic gauge/gravity correspondences to the study of more and more

diverse phenomena are ever widening in scope. Over the last half a decade the links between

finite temperature generalizations of AdS/CFT and experimental heavy-ion collisions have be-

come much more concrete and the theoretical methods available to us are yielding ever deeper

results concerning the properties of the quark-gluon plasma (see ref. [1, 2] for a recent review).

Moreover in the last year the links between holography and condensed matter systems have

also flourished, with work on superconductivity, and superfluidity, quantum phase transitions

and both the classical and quantum hall effects having recent successes (e.g. refs. [3, 4] and

references therein).

In the present work we extend the investigation of holographic gauge theories in the presence of

external magnetic fields from the work first studied in ref. [5]. In this paper we are interested in

finding both universal properties of strongly coupled gauge theories in the presence of magnetic

fields, as well as in the different phenomena exhibited in such theories in a variety of space-time

dimensions.

The phenomenon of dynamical flavor symmetry breaking catalysed by an arbitrarily weak

magnetic field is known from refs. [6, 7] and refs. [8, 9, 10]. This effect was shown to be model

independent and therefore insensitive to the microscopic physics underlying the low energy

effective theory. In particular the infra-red (IR) description of the Goldstone modes associated

with the dynamically broken symmetry should be universal. We therefore expect to be able

to study this phenomenon using the holographic formalism. The aim of the present study will

be to investigate the dynamics of the Goldstone modes and construct the low energy chiral

Lagrangian of theories both in 3+1 and 2+1 dimensions in the presence of external magnetic

fields, showing that the appropriate holographic models give precisely the results expected from

the traditional field theory approach.

The effective dynamics of fermion pairing, in d + 1 dimensions, in the presence of an external

magnetic field is constrained to d − 2 spatial dimensions. For this reason there are marked

differences in the phenomenology of such systems in two and three spatial dimensions. In 2+1

dimensions refs. [7]-[10] Poincare symmetry is broken by the magnetic field (there is no longer

any trace of the original boost invariance), removing the strong constraints on the dynam-

ics of Goldstone modes imposed by special relativity. The naive Goldstone boson counting

therefore does not hold and the resulting dispersion relation for the Goldstone modes takes a

quadratic form, unlike in the case of 3+1 dimensions where an SO(1, 1) subgroup of SO(3, 1)
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constrains the dynamics. Although the number of Goldstone particles is no longer constrained

in the non-relativistic setting, the number of Goldstone fields is fixed by the dimension of G/H

(G=symmetry of the action, H=symmetry of the ground state). We will show that this also

holds in the AdS/CFT context.

The 2+1 dimensional model is of particular interest because, as shown in ref. [11], the low

energy effective description is that of magnon excitations in a ferromagnet. Using a D3/D5

brane intersection we will be able to reproduce such a result at quadratic order in the chiral

Lagrangian. Moreover such 2+1 dimensional theories may have relevance in the arenas of the

quantum hall effect, and high Tc superconductivity.

In addition to the phenomena discussed specifically in two and three spatial dimensions we show

that certain universal behaviors are exhibited holographically in the present context. Here we

will study holographic systems T-dual to the D3/D7 flavor model and show that the existence

of an arbitrarily small magnetic field induces a spiral behaviour in the equation of state for

such systems. In the limit that the chiral symmetry of the underlying theory is preserved, this

equation of state can be studied analytically and such a symmetric vacuum can be shown to be

unstable. This is holographically equivalent to the findings of refs. [6]-[10] – flavor symmetry

breaking is induced dynamically by the presence of a magnetic field.

The outline of the present paper is as follows:

In section 2 we will return to the D3/D7 brane intersection in the presence of an external

magnetic field, discussed in ref. [5]. We shall show explicitly how the magnetic catalysis of

flavor symmetry breaking is realised in the holographic system, including the calculation of the

chiral Lagrangian to second order in the low energy degrees of freedom. We will show that the

Gell-Mann–Oakes–Renner relation holds analytically and obtain the dispersion relation for the

Goldstone modes.

In section 3 we turn to the case of the D3/D5 defect theory and show here how the SO(3)

flavor symmetry is dynamically broken to the U(1) subgroup in the presence of a magnetic

field. In this non-relativistic system we find the Goldstone modes and show that the number of

massless modes is not the same as the number of broken generators, but satisfies a more general

counting rule [25] applicable for non-relativistic systems. We also show that the single Goldstone

mode satisfies a modified Gell-Mann–Oakes–Renner relation and a quadratic dispersion relation.

Again we obtain the dispersion relation analytically in the small mass limit and find the low

energy effective Lagrangian which describes magnon excitations in a ferromagnet.

In section 4 we prove that the magnetic catalysis of dynamical symmetry breaking is a universal
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effect in gauge theories dual to Dp/Dq intersections in the appropriate decoupling limit. This

proof involves showing that all such systems exhibit a self–similar spiral behaviour in their

equation of state which leads to an instability for the solution with zero dynamical mass. Just

as in the work of ref. [7] this effect is independent of the magnitude of the external magnetic

field.

2 Mass generation in the D3/D7 system

In this section we will review the results of refs. [5, 12, 13], where a holographic study of flavored

N = 4 supersymmetric Yang-Mills in an external magnetic field was studied using the D3/D7

system. We will focus on the effect of mass generation by magnetic catalysis in this theory

and provide a detailed analysis of the pseudo-Goldstone mode associated to the spontaneous

breaking of a global U(1) R-symmetry. In particular we will show that the Gell-Mann–Oakes–

Renner relation for the mass of the corresponding η′ meson is satisfied.

The D3/D7 system provides a dual holographic description of Nf fundamental N = 2 hy-

permultiplets coupled to N = 4 SU(Nc) supersymmetric Yang Mills theory in the quenched

approximation Nf " Nc [14]. At zero separation between the D3 and D7–branes the funda-

mental hypermultiplets are massless and the β–function of the theory is proportional to Nf/Nc.

Thus in the quenched approximation the β–function vanishes and the corresponding gauge the-

ory is conformal. The global SO(6) R-symmetry of the N = 4 SYM theory is broken to an

SU(2) × U(1) R–symmetry, the U(1) corresponding to rotations in the 2-plane transverse to

both the D3 and D7–branes. The left and right handed fermions of the hypermultiplet have

opposite charges under this U(1)R and thus the formation of a fermionic condensate 〈ψ̄ψ〉 would

lead to the spontaneous breaking of this symmetry.

2.1 Spontaneous symmetry breaking

There are various ways in which one can study the breaking of the chiral symmetry holo-

graphically. This has been studied in the past by the deformation of AdS5 × S5 by a field

corresponding to a marginally irrelevant operator on the gauge theory side refs. [17, 18, 19].

In the present case however we will stimulate the formation of a condensate by turning on the

magnetic components of the U(1) gauge field of the D7–branes Fαβ (equivalent to exciting a

pure gauge B−field in the supergravity background). This U(1) gauge field corresponds to

the diagonal U(1) of the full U(Nf ) gauge symmetry of the stack of D7–branes. Since the
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D7–branes wrap an infinite internal volume, the dynamics of the U(Nf ) gauge field is frozen in

the four dimensional theory and the U(Nf ) gauge symmetry becomes a global flavor symmetry

U(Nf ) = U(1)B × SU(Nf ). Therefore the U(1) gauge field that we consider corresponds to

the gauged U(1)B baryon symmetry and the magnetic field that we introduce couples to the

baryon charge of the fundamental fields [27].

The problem thus boils down to studying embeddings of probe D7–branes in the AdS5 × S5

background parameterized as follows:

ds2 =
ρ2 + L2

R2
[−dx2

0 + dx2
1 + dx2

2 + dx2
3] +

R2

ρ2 + L2
[dρ2 + ρ2dΩ2

3 + dL2 + L2dφ2] ,

dΩ2
3 = dψ2 + cos2 ψdβ2 + sin2 ψdγ2, (1)

gsC(4) =
u4

R4
dx0 ∧ dx1 ∧ dx2 ∧ dx3; eΦ = gs; R4 = 4πgsNcα

′2 ,

where ρ, ψ, β, γ and L, φ are polar coordinates in the transverse R4 and R2 planes respectively.

Here xa=1..3, ρ, ψ, β, γ parameterize the world volume of the D7–brane and the following ansatz

is considered for its embedding:

φ ≡ const , L ≡ L(ρ) ,

leading to the following induced metric on its worldvolume:

ds̃ =
ρ2 + L(ρ)2

R2
[−dx2

0 + dx2
1 + dx2

2 + dx2
3] +

R2

ρ2 + L(ρ)2
[(1 + L′(ρ)2)dρ2 + ρ2dΩ2

3] . (2)

The D7–brane probe is described by the DBI action:

SDBI = −Nfµ7

∫

M8

d8ξe−Φ[−det(Gab + Bab + 2πα′Fab)]
1/2 . (3)

Here µ7 = [(2π)7α′4]−1 is the D7–brane tension, Gab and Bab are the induced metric and B-field

on the D7–brane’s world volume, while Fab is its world–volume gauge field. A simple way to

introduce a magnetic field is to consider a pure gauge B–field along the x2, x3 directions:

B(2) = Hdx2 ∧ dx3 . (4)

Since Bab and Fab appear on equal footing in the DBI action, the introduction of such a B-field

is equivalent to introducing an external magnetic field of magnitude H/(2πα′) to the dual gauge

theory.
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Though the full solution of the embedding can only be calculated numerically, the large ρ

behaviour (equivalently the ultraviolet (UV) regime in the gauge theory language) can be

extracted analytically:

L(ρ) = m +
c

ρ2
+ · · · . (5)

As discussed in ref. [18], the parameters m (the asymptotic separation of the D7- and D3-

branes) and c (the degree of bending of the D7–brane in the large ρ region) are related to

the bare quark mass mq = m/2πα′ and the fermionic condensate 〈ψ̄ψ〉 ∝ −c respectively. It

should be noted that the boundary behavior of L(r) really plays the role of source and vacuum

expectation value (vev) for the full N = 2 hypermultiplet of operators. In the present case,

where supersymmetry is broken by the gauge field configuration, we are only interested in the

fermionic bilinears and this will refer only to quarks, and not their supersymmetric counterparts.

At this point it is convenient to introduce dimensionless parameters c̃ = c/R3H3/2 and m̃ =

m/R
√

H. By performing a numerical shooting method from the infrared while varying the

small ρ boundary value, L(ρ → 0) = LIR, we recover the parametric plot presented in figure 1,

the main result explored in ref. [5].
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Figure 1: Parametric plot of c̃ against m̃ for fundamental matter in the presence of an external
magnetic field. The lower (black) line represents the curve 1/m̃, fitting the large m̃ behavior. It is
also evident that for the outer branch of the spiral, for m̃ = 0 the condensate, 〈ψ̄ψ〉 is non-zero. The
corresponding value of the condensate is c̃cr = 0.226.

The lower (black) curve corresponds to the analytic behavior of c̃(m̃) = 1/m̃ for large m̃. The

most important observation is that at m̃ = 0 there is a non-zero fermionic condensate:

〈ψ̄ψ〉 = − NfNc

(2πα′)3λ
c = − NfNcc̃cr

(2π2)3/4λ1/4

(
H

2πα′

)3/2

. (6)
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Where λ = g2
Y MNc is the ’t Hooft coupling and c̃cr ≈ 0.226 is a numerical constant corresponding

to the y-intercept of the outer spiral from figure 1. Equation (6) is telling us that the theory

has developed a negative condensate that scales as
(

H
2πα′

)3/2
. This is not surprising, since the

theory is conformal in the absence of the scale introduced by the external magnetic field. The

energy scale controlled by the magnetic field,
(

H
2πα′

)1/2
, leads to an energy density proportional

to
(

H
2πα′

)2
. In order to lower the energy, the theory responds to the magnetic field by developing

a negative fermionic condensate.

Another interesting feature of the theory is the discrete–self–similar structure of the equation

of state (c̃ vs. m̃) in the vicinity of the trivial m̃ = 0 embedding, namely the origin of the plot

from figure 1 presented in figure 2.

!c"crH0

H1
H2

!0.5 0.5 m"

!0.2

!0.1

0.1

0.2

!c"!m" "

Figure 2: A magnification of figure 1 shows the spiral behavior near the origin of the (−c̃, m̃)-plane.
The second (left) spiral arm represents the (m̃,−c̃) → (−m̃, c̃) symmetry of the theory.

This double logarithmic structure has been analyzed in ref. [12], where a study of the meson

spectrum revealed that only the outer branch of the spiral is tachyon free and corresponds to

a stable phase having spontaneously broken chiral symmetry. In Section 3 of this paper we

will show that an identical structure is also present for the D3/D5 system and in Section 4

we will demonstrate that this structure is a universal feature of the magnetic catalysis of mass

generation for gauge theories holographically dual to Dp/Dq intersections.

A further result of refs. [5, 12, 13] was the detailed analysis of the light meson spectrum of

the theory. In ref. [5] it was shown that the introduction of an external magnetic field breaks
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the degeneracy of the spectrum studied in ref. [15]. This manifests itself as Zeeman splitting

of the energy levels. In the limit of zero quark mass, the study also revealed the existence

of a massless “η′ meson” corresponding to the spontaneously broken U(1)R symmetry. In the

next subsection we will revisit the study of the meson spectrum of the theory and provide an

analytic proof of the Gell-Mann–Oakes–Renner relation [24]:

M2
π = −2〈ψ̄ψ〉

f 2
π

mq , (7)

in the spirit of the analysis performed in ref. [18].

2.2 The Gell-Mann–Oakes–Renner relation - an analytic derivation

In order to study the light meson spectrum of the theory one needs to consider the quadratic

fluctuations of the D7–brane embedding and study the corresponding normal modes [15]. Tech-

nically one should consider the full supergravity action for the D7–branes:

Stot = SDBI + SWZ , (8)

where SDBI is given by equation (3) and the relevant part of the Wess-Zumino term is given by

[5]:

SWZ =
(2πα′)2

2
µ7

∫
F(2) ∧ F(2) ∧ C(4) + (2πα′)µ7

∫
F(2) ∧B(2) ∧ P̃ [C(4)] , (9)

The next step is to consider fluctuations of the D7–brane in the transverse R2:

L = L0(ρ) + 2πα′δL ; φ = 2πα′Φ , (10)

and expand equation (8) to second order in α′. Note that with such an expansion we should also

consider fluctuations of the U(1) gauge field on the D7–brane. As demonstrated in refs. [5, 20]

the effect of the magnetic field will be to mix the equations of motion for the scalar and vector

fluctuations. In particular Φ couples to the A0 and A1 components of the gauge field, while δL

couples to the A2 and A3 components. The rest of the components of the vector field decouple

and can be consistently set to zero. This splitting of the meson spectrum is a manifestation of

the broken Lorentz symmetry. Indeed the external magnetic field breaks the SO(1, 3) Lorentz

symmetry down to SO(1, 1)×SO(2) corresponding to boosts in the x0, x1 plane and rotations in

the x2, x3 plane. Since the massless “pion” that we are interested in corresponds to fluctuations

along φ, we will excite only the Φ, A0, A1 fields. The relevant terms of the expansion are [5]:
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Lφφ = −(2πα′)2µ7

gs

1

2

√
|gS3| gR2L2

0

ρ2 + L2
0

Sab∂aΦ∂bΦ , (11)

LΦA = −(2πα′)2µ7

gs

√
|gS3|H∂ρKΦF01 ,

LAA = −(2πα′)2µ7

gs

√
|gS3|1

4
gSaa′Sbb′FabFa′b′ ,

where:

||Sab|| = diag{−G−1
11 , G−1

11 ,
G11

G2
11 + H2

,
G11

G2
11 + H2

, G−1
ρρ , G−1

ψψ, G−1
αα, G−1

ββ} , (12)

g(ρ) = ρ3
√

1 + L0
′2

√

1 +
R4H2

(ρ2 + L2
0)

2
; K(ρ) =

R4ρ4

(ρ2 + L2
0)

2
;

√
|gS3| = sin ψ cos ψ .

Here L0(ρ) corresponds to the classical embedding of the D7–brane and Gab are the components

of the background metric equation (1).

The equations of motions for Φ and F01 are calculated from the quadratic action, resulting in:

1

g(ρ)
∂ρ

(
g(ρ)L2

0∂ρΦ

1 + L′20

)
+

L2
0∆Ω3Φ

ρ2
+

R4L2
0

(ρ2 + L2
0)

2
!̃Φ− H∂ρK

g(ρ)
F01 = 0 , (13)

1

g(ρ)
∂ρ

(
g(ρ)∂ρF01

1 + L′20

)
+

∆Ω3F01

ρ2
+

R4

(ρ2 + L2
0)

2
!̃F01 −

H∂ρK

g(ρ)
(−∂2

0 + ∂2
1)Φ = 0 ,

where F01 = ∂0A1 − ∂1A0 and the gauge constraint −∂0A0 + ∂1A1 = 0 is imposed (note that

this is the usual Lorentz gauge, corresponding to the unbroken SO(1, 1)) and we have defined:

!̃ = −∂2
0 + ∂2

1 +
∂2

2 + ∂2
3

1 + R4H2

(ρ2+L2
0)2

. (14)

Once again the broken Lorentz symmetry is manifest in equation (14). The definition of the

spectrum is now a subtle issue in the presence of the broken space-time symmetry. We will

define the spectrum as the energy of a particle as measured in its rest frame. In fact because

we retain the SO(1, 1) symmetry we may consider fluctuations propagating in the x1 direction.

Since we are interested in describing the lowest lying modes (“pions” in particular) we will

focus on modes that have no S3 dependence. Therefore we consider the ansätze:

Φ = ei(k0x0+k1x1)h(ρ); F01 = ei(k0x0+k1x1)f(ρ) , (15)
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and define:

M2 = k2
0 − k2

1 . (16)

The equations (13) simplify to:

1

g
∂ρ

(
gL2

0

1 + L′20
∂ρh

)
+

R4L2
0

(ρ2 + L2
0)

2
M2h− H∂ρK

g
f = 0 , (17)

1

g
∂ρ

(
g

1 + L′20
∂ρf

)
+

R4

(ρ2 + L2
0)

2
M2f − M2H∂ρK

g
h = 0 .

Note that for large bare masses m (and correspondingly large values of L) the term proportional

to the magnetic field is suppressed and the meson spectrum should approximate to the result

for the pure AdS5 × S5 space-time case studied in ref. [15], where the authors obtained the

following relation:

Mn =
2m

R2

√
(n + 1)(n + 3) , (18)

between the eigenvalue of the nth excited state ωn and the bare mass m. If one imposes the

boundary conditions:

h(ε) = 1; h′(ε) = 0; f(ε) = 1; f ′(ε) = 0 , (19)

the coupled system of differential equations can be solved numerically. Then by requiring the

functions h(ρ) and f(ρ) to be regular at infinity one can quantize the spectrum of the fluctu-

ations. It is also convenient to define the following dimensionless parameter M̃ = MR/
√

H.

The resulting plot for the first three excited states is presented in figure 3. There is Zeeman

splitting of the states due to the magnetic field. (In the absence of the field there are three

straight lines emanating from the origin; these are split to form six curves.) Also, at zero bare

quark mass there is indeed a massless Goldstone mode, appearing at the end of the lowest

curve. Furthermore the plot in figure 4 shows that for small bare quark mass one can observe

a characteristic M̃ ∝
√

m̃ dependence. In the next section we shall provide an analytic proof

of that relation and obtain an integral expression for the numerical coefficient 0.64 presented

above the plot in figure 4.

In the following section we shall demonstrate that for small bare quark mass, mq = m/2πα′,

the spectrum exhibits the characteristic M2 ∝ m dependence. Once we have illustrated that

the functional dependence is correct we will show that the constant of proportionality is also

that expected from the GMOR relation. Furthermore we shall generalize the ansätze (15) to

consider fluctuations depending on both the momentum along the magnetic field /k|| = (k1, 0, 0)

and the transverse momentum /k⊥ = (0, k2, k3):

Φ = ei(ωt+)k.)x)h(ρ) ; F01 = ei(ωt+)k.)x)f(ρ) . (20)
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Figure 3: There is Zeeman splitting of the states due to the magnetic field. In the absence of the
field there are three straight lines emanating from the origin; these are split to form six curves. At
zero bare quark mass (the end of the lowest curve) there is indeed a massless Goldstone mode. The
straight lines correspond to the asymptotic AdS results.

We shall also show that for small ω = k0 and |/k| the following dispersion relation holds:

ω(/k)2 = M2 + /k2
|| + γ/k2

⊥ ; ω = k0 ; /k|| = (k1, 0, 0) ; /k⊥ = (0, k2, k3) , (21)

where γ is a constant that we shall determine.

2.2.1 The M2 ∝ m dependence

Using an approach similar to the one employed in ref. [18] we define:

Ψ2 =
gL2

0

1 + L′20
; ν = R4 1 + L′20

(ρ2 + L2
0)

2
; ν̃ = R4 1 + L′20

(ρ2 + L2
0)

2

1

1 + R4H2

(ρ2+L2
0)2

, (22)

Ψ1 = Ψ/L0 ; ψ = hΨ ; ψ1 = fΨ1 .

The equations of motions (13) can then be written in the compact form:

ψ̈ − Ψ̈

Ψ
ψ = −(ω2 − /k2

||)νψ + /k2
⊥ν̃ψ +

H∂ρK

ΨΨ1
ψ1 , (23)

ψ̈1 −
Ψ̈1

Ψ1
ψ1 = −(ω2 − /k2

||)νψ1 + /k2
⊥ν̃ψ1 +

H∂ρK

ΨΨ1
(ω2 − /k2

||)ψ .

Let us remind the reader that for large ρ, L0(ρ) has the behavior:

L0 ∝ m +
c

ρ2
+ · · · , (24)
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Figure 4: There is a characteristic M̃ ∝
√

m̃ behavior at small bare quark mass.

Let us denote by L̄0 the classical embedding corresponding to (m = 0, c = ccr). It is relatively

easy to verify that at m = 0, /k⊥ = /0 and correspondingly M2 = ω2 − /k2
|| = 0 the choice:

ψ = Ψ̄ ≡ Ψ|L̄0
; ψ1 = 0 , (25)

is a solution to the system (23). Next we consider embeddings corresponding to a small bare

quark mass δm. This will correspond to small nonzero values of M2 and /k2
⊥. It is then natural

to consider the following variations:

ψ = Ψ̄ + δψ , (26)

ψ1 = 0 + δψ1 ,

where δψ and δψ1 are of order M2. Note that M corresponds to the mass of the ground state

at mq = δm/2πα′ and we are assuming that the variations of the wave functions δψ and δψ1

are infinitesimal for infinitesimal mq. After expanding in equation (23) we get the following

equations of motion:

δψ̈ −
¨̄Ψ

Ψ̄
δψ − δ

(
Ψ̈

Ψ

)
Ψ̄ = −(ω2 − /k2

||)ν̄Ψ̄ + /k2
⊥
¯̃vΨ̄ +

H∂ρK

Ψ̄1Ψ̄
δψ1 , (27)

Ψ̄1δψ̈1 − ¨̄Ψ1δψ1 = H∂ρK(ω2 − k2
||) ,

where ν̄ = ν|L̄0
. The second equation in (27) can be integrated to give:

Ψ̄1δψ̇1 − ˙̄Ψ1δψ1 = HK(ω2 − k2
||) + constant . (28)
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From the boundary conditions that K|ρ=0 = 0 and Ψ̄1(0) = 0, ˙̄Ψ1(0) = 0 we see that the

constant of integration is zero and arrive at:

∂ρ

(
δψ1

Ψ̄1

)
=

HK(ω2 − k2
||)

Ψ̄2
1

. (29)

Next we multiply the first equation in (27) by Ψ̄ and integrate along ρ to obtain:

(ω2 − /k2
||)

∞∫

0

dρν̄Ψ̄2 − /k2
⊥

∞∫

0

dρ¯̃νΨ̄2 = −
∞∫

0

(Ψ̄δψ̈ − ¨̄Ψδψ)dρ +

∞∫

0

Ψ̄2δ

(
Ψ̈

Ψ

)
dρ + (30)

+H

∞∫

0

∂ρKδψ1

Ψ̄1
dρ = −(Ψ̄δψ̇ − ˙̄Ψδψ)

∣∣∣
∞

0
+ (Ψ̄δΨ̇− ˙̄ΨδΨ)

∣∣∣
∞

0
−H

∞∫

0

K∂ρ

(
δψ1

Ψ̄1

)
dρ ,

where the last term on the right-hand side of equation (30) has been integrated by parts

using the fact that δψ1 should be regular at infinity. From the definition of Ψ̄ it follows that

Ψ̄ ∝ ρ3/2L0(0) as ρ → 0 and Ψ̄ ∝ c/ρ1/2 as ρ → ∞. This together with the requirement that

ψ1 is regular at ρ = 0 and vanishes at infinity, suggests that the first term on the right-hand

side of equation (30) vanishes. For the next term, we use the fact that:

δΨ = ρ3/2δ




1 + H2R4

(ρ2+L2
0)2

1 + L′20




1/4

L0 + ρ3/2




1 + H2R4

(ρ2+L2
0)2

1 + L′20




1/4

δL0 , (31)

and therefore obtain:

δΨ|0 = 0; δΨ̇|0 = 0 , (32)

δΨ|∞ ∝ ρ3/2δm ; δΨ̇|∞ ∝
3

2

√
ρδm .

The second term in equation (30) then becomes:

(Ψ̄δΨ̇− ˙̄ΨδΨ)
∣∣∣
∞

0
= 2cδm . (33)

Finally using the equality in equation (29) we arrive at the result:

(ω2 − /k2
||)

∞∫

0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

}
− /k2

⊥

∞∫

0

dρ¯̃νΨ̄2 = 2cδm . (34)

Now we define:

γ =




∞∫

0

dρ¯̃νΨ̄2



 /




∞∫

0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

}

 , (35)
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and solve for M2 from equation (21) to obtain:

M2

∞∫

0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

}
= 2cδm . (36)

Equation (36) suggests that the mass of the “pion” associated to the softly broken global U(1)

symmetry satisfies the Gell-Mann–Oakes–Renner relation [24]:

M2
π = −2〈ψ̄ψ〉

f 2
π

mq . (37)

In order to prove equation (37) we need to evaluate the effective coupling of the “pion” f 2
π .

Noting that δm ∝ mq and c ∝ −〈ψ̄ψ〉, we conclude that:

f 2
π ∝

∞∫

0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

}
. (38)

At this point is useful to verify the consistency of our analysis by comparing the coefficient in

equation (36) to the numerically determined coefficient 0.64 from the plot in figure 4. Indeed

from equation (36) we obtain:

M̃/
√

m̃ =



 1

2c̃cr

∞∫

0

dρ̃





¯̂ν ¯̂Ψ

2
+

¯̂K
2

¯̂Ψ
2

1









−1/2

≈ 0.655 , (39)

where we have defined the dimensionless quantities:

ν̂ = H2ν; Ψ̂2 = Ψ2/R5H5/2; Ψ̂2
1 = Ψ2

1/R
3H3/2; K̂ = K/R4 . (40)

There is excellent agreement with the fit from figure 4.

Next we will obtain an effective four dimensional action for the “pion” and from this derive an

exact expression for f 2
π .

2.2.2 Effective chiral action and f 2
π

In this section we will reduce the eight dimensional world-volume action for the quadratic

fluctuations of the D7–brane to an effective action for the massless “pion” associated to the

spontaneously broken global U(1) symmetry. Note that our effective action should be describing

a single “pion” mode, while the 8D action given by equation (11) describes the dynamics of

two independent degrees of freedom, namely Φ and F01 coupled by the magnetic B-field via

14



the second equation in equation (11). As rigid rotations along φ correspond to chiral rotations,

(the asymptotic value of φ at infinity corresponds to the phase of the condensate in the dual

gauge theory) the spectrum of Φ at zero quark mass contains the Goldstone mode that we are

interested in. This is why we first integrate out the gauge field components A0 and A1 and

then dimensionally reduce to four dimensions.

Furthermore as mentioned earlier, because of the magnetic field the SO(1, 3) Lorentz symmetry

is broken down to SO(1, 1)× SO(2) symmetry. This is why in order to extract the value of f 2
π

we consider excitations of Φ depending only on the x0, x1 directions and read off the coefficient

in front of the kinetic term. The resulting on-shell effective action for Φ is:

Seff = −N
∫

d4x
[
−(∂0Φ)2 + (∂1Φ)2

]
, (41)

where N is given by:

N = (2πα′)2µ7

gs
Nfπ

2

∞∫

0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

}
. (42)

We refer the reader to Appendix A for a detailed derivation of the 4D effective action Seff .

We have defined Φ via φ = (2πα′)Φ, where φ corresponds to rotations in the transverse R2

plane and is the angle of chiral rotation in the dual gauge theory. The chiral Lagrangian is

then given by:

Seff = −(2πα′)2f 2
π

4

∫
d4x∂µΦ∂µΦ ; µ = 0 or 1 , (43)

and therefore:

f 2
π = Nf4π

2µ7

gs

∞∫

0

dρ

(
ν̄Ψ̄2 +

H2K2

Ψ̄2
1

)
. (44)

The D7–brane charge in equation (44) is given by µ7 = [(2π)7α′4]−1 and the overall prefactor

in equation (44) can be written as NfNc/2(2πα′)4λ. Now, recalling the expressions for the

fermionic condensate, equation (6), and the bare quark mass, mq = m/2πα′, one can easily

verify that equation (36) is indeed the Gell-Mann–Oakes–Renner relation:

M2
π = −2〈ψ̄ψ〉

f 2
π

mq . (45)

It turns out that for small momenta /k||, /k⊥ and small mass M2
π one can obtain the following

more general effective 4D action (see appendix A for a detailed derivation):

Seff = −N
∫

d4x

{
[−(∂0Φ̃)2 + (∂1Φ̃)2] + γ[(∂2Φ̃)2 + (∂3Φ̃)2]− 2〈ψ̄ψ〉

f 2
π

mqΦ̃
2

}
+ · · · , (46)
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where γ is defined in equation (132). As one can see, the action (46) is the most general

quadratic action consistent with the SO(1, 1) × SO(2) symmetry and suggests that pseudo

Goldstone bosons satisfy the dispersion relation (21).

3 Mass generation in the D3/D5 system

In this section we provide a holographic description of the magnetic catalysis of chiral symmetry

breaking in 1 + 3 dimensional SU(Nc) N = 4 supersymmetric Yang-Mills theory coupled

to Nf N = 2 fundamental hypermultiplets confined to a 1 + 2 dimensional defect. Recently

this theory received a great deal of attention and emphasis has been made of the potential

application of this brane configuration in describing qualitative properties of 1 + 2 dimensional

condensed matter systems (see for example refs. [28, 29, 30]). In this section we will study the

effect of an external magnetic field on the theory and demonstrate that the system develops

a dynamically generated mass and negative fermionic condensate leading to a spontaneous

breaking of a global SO(3) symmetry down to a U(1) symmetry. On the gravity side this

symmetry corresponds to the rotational symmetry in the transverse R3. Naively there should

be two massless Goldstone bosons corresponding to the generators of the coset SO(3)/U(1).

As we will show the 1+2 dimensional nature of the defect theory leads to a coupling of the

transverse scalars corresponding to the coset generators and as a result there is only a single

Goldstone mode. Furthermore the characteristic Mπ ∝
√

m Gell-Mann–Oakes–Renner relation

is modified to a linear Mπ ∝ m behavior. It turns out that these features can be understood

from a low energy effective theory point of view. Indeed in 1 + 2 dimensions the effect of the

magnetic field is to break the SO(1, 2) Lorentz symmetry down to SO(2) rotational symmetry

and as a result the theory is non-relativistic. A single time derivative chemical potential term

is allowed (there is no boost symmetry) and interestingly the supergravity action generates

such a term through the Wess-Zumino contribution of the D5–brane. It is this term that is

responsible for the modified counting rule of the number of Goldstone bosons [25] and leads

to a quadratic dispersion relation as well as to the modified linear Gell-Mann–Oakes–Renner

relation. Another interesting feature of the model is that to quadratic order the effective low

energy action is the same as the effective action describing spin waves in a ferromagnet [11] in

an external magnetic field. We comment briefly on the possible applications of this similarity.
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3.1 Generalities

Let us consider the AdS5×S5 supergravity background (1) and introduce the following param-

eterization:

ds2 =
u2

R2
[−dx2

0 + dx2
1 + dx2

2 + dx2
3] +

R2

u2
[dr2 + r2dΩ2

2 + dl2 + l2dΩ̃2
2] , (47)

u2 = r2 + l2 ; dΩ2
2 = dα2 + cos2 αdβ2 ; dΩ̃2

2 = dψ2 + cos2 ψdφ2 .

We have split the transverse R6 to R3×R3 and introduced spherical coordinates r, Ω2 and l, Ω̃2

in the first and second R3 planes respectively. Next we introduce a stack of probe Nf D5–branes

extended along the x0, x1, x2 directions, and filling the R3 part of the geometry parameterized

by r, Ω2. As mentioned above on the gauge theory side this corresponds to introducing Nf

fundamental N = 2 hypermultiplets confined on a 1 + 2 dimensional defect. The asymptotic

separation of the D3 and D5 –branes in the transverse R3 space parameterized by l corresponds

to the mass of the hypermultiplet. In the following we will consider the following anzatz for a

single D5–brane:

l = l(r) ; ψ = 0 ; φ = 0 . (48)

The asymptotic separation m = l(∞) is related to the bare mass of the fundamental fields via

mq = m/2πα′. If the D3 and D5 branes overlap, the fundamental fields in the gauge theory are

massless and the theory has a global SO(3)× SO(3) symmetry. Clearly a non-trivial profile of

the D5–brane l(r) in the transverse R3 would break the global symmetry down to SO(3)×U(1),

where U(1) is the little group in the transverse R3. If the asymptotic position of the D5–brane

vanishes (m = 0) this would correspond to a spontaneous symmetry breaking, the non-zero

separation l(0) on the other hand would naturally be interpreted as the dynamically generated

mass of the theory.

Note that the D3/D5 intersection is T–dual to the D3/D7 intersection from the previous section

and thus the system is supersymmetric. The D3 and D5 –branes are BPS objects and there is

no attractive potential for the D5–brane, hence the D5–brane has a trivial profile l ≡ const.

However a non-zero magnetic field will break the supersymmetry and as we are going to demon-

strate, the D5–brane will feel an effective repulsive potential that will lead to dynamical mass

generation. In order to introduce a magnetic field perpendicular to the plane of the defect, we

consider a pure gauge B-field in the x1, x2 plane given by:

B = Hdx1 ∧ dx2 . (49)

This is equivalent to turning on a non-zero value for the 0, 1 component of the gauge field on

the D5–brane. The magnetic field introduced into the dual gauge theory in this way has a
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magnitude H/2πα′. The D5–brane embedding is determined by the DBI action:

SDBI = −Nfµ5

∫

M6

d6ξe−Φ[−det(Gab + Bab + 2πα′Fab)]
1/2 . (50)

Where Gab and Bab are the pull-back of the metric and the B-field respectively and Fab is the

gauge field on the D5–brane.

With the anzatz (48) the Lagrangian is given by:

L ∝ r2
√

1 + l′2

√

1 +
R4H2

(r2 + l2)2
. (51)

From this it is trivial to solve the equation of motion for l(r) numerically, imposing l(0) = lin

and l′(0) as initial conditions. Clearly, at large r the Lagrangian (51) asymptotes to that at

zero magnetic field and hence we have the asymptotic solution [26]:

l(r) = m +
c

r
+ · · · , (52)

where c ∝ 〈ψ̄ψ〉 the condensate of the fundamental fields.

3.2 Spontaneous symmetry breaking

Before solving the equation of motion it is convenient to introduce dimensionless variables:

r̃ = r/R
√

H ; l̃ = l/R
√

H ; m̃ = m/R
√

H ; c̃ = c/R2H . (53)

The Lagrangian (51) can then be written as:

L ∝ r̃2
√

1 + l̃′2

√
1 +

1

(r̃2 + l̃2)2
. (54)

The corresponding equation of motion is:

∂r̃



 r̃2l′√
1 + l̃′2

√
1 + (r̃2 + l̃2)2

(r̃2 + l̃2)



 = −2
r̃2l̃

√
1 + l̃′2

(r̃2 + l̃2)2

√
1 + (r̃2 + l̃2)2

. (55)

Before solving equation (55) it will be useful to extract the asymptotic behavior of c̃(m̃) at

large m̃. To this end we use that at large m̃ the separation l̃(r̃) ≈ m̃ = const. The equation of

motion then simplifies to:

∂r̃(r̃
2l̃′) = − 2r̃2m̃

(r̃2 + m̃2)3
, (56)
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and hence:

r̃2l̃′ = −2m̃

r̃∫

0

dr̃
r̃2

(r̃2 + m̃2)2
. (57)

Using the expansion (52) one can verify that:

lim
r̃→+∞

r̃2l̃′ = c̃ = 2m̃

∞∫

0

dr̃
r̃2

(r̃2 + m̃2)3
=

π

8m̃2
. (58)

Equation (58) can thus be used as a check of the accuracy of our numerical results. Indeed the

numerically generated plot of −c̃ vs. m̃ is presented in figure 5. The most important observation

is that at zero bare mass m̃ the theory has developed a negative condensate 〈ψ̄ψ〉 ∝ −c̃cr ≈
−0.59. It can also be seen that for large m̃ the numerically generated plot is in good agreement

with equation (58) represented by the lower (black) curve. Another interesting feature of the

equation of state is the spiral structure near the origin of the parameter space analogous to

the one presented in figure 2 for the case of the D3/D7 system. We will come back to this in

Section 4 in more general terms, and show that this feature is universal for the class of gauge

theories dual to the Dp/Dq systems.

1 2 3 4 m!

"0.6

"0.4

"0.2

0.2
"c!

Figure 5: A plot of −c̃ vs. m̃. At zero bare mass m̃ = 0 the theory has developed a negative
condensate 〈ψ̄ψ〉 ∝ −c̃cr ≈ −0.59. For large m̃ there is excellent agreement with equation (58), as
represented by the lower (blue) curve.

In order to show that the global SO(3) symmetry is indeed spontaneously broken we need to

study the free energy of the theory. Indeed the existence of the spiral structure suggests that

there is more than one phase at zero bare mass, corresponding to the different y-intercepts of

the −c̃ vs. m̃ plot. We will demonstrate below that the lowest positive branch of the curve

presented in figure 5 is the stable one.
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Following ref. [26] we will identify the regularized wick rotated on-shell action of the D5–brane

with the free energy of the theory. Let us introduce a cut-off at infinity, rmax, The wick rotated

on-shell action is given by:

S = Nf
µ5

gs
4πV3R

3H3/2

r̃max∫

0

dr̃r̃2
√

1 + l̃′2

√
1 +

1

(r̃2 + l̃2)2
, (59)

where V3 =
∫

d3x and l̃(r̃) is the solution of equation (55). It is easy to verify, using the

expansion from equation (52), that the integral in equation (59) has the following behavior at

large r̃max:
r̃max∫

0

dr̃r̃2
√

1 + l̃′2

√
1 +

1

(r̃2 + l̃2)2
=

1

3
r3
max + O

(
1

rmax

)
. (60)

It is important that in these coordinates the divergent term is independent of the field l̃, it is

therefore possible to regularize the on-shell action by subtracting the free energy of the l̃ ≡ 0

embedding. The resulting regularized expression for the free energy is:

F = Sreg = Nf
µ5

gs
4πV3R

3H3/2ĨD5 , (61)

where

ĨD5 =

∞∫

0

dr̃

[
r̃2

√
1 + l̃′2

√
1 +

1

(r̃2 + l̃2)2
−
√

1 + r̃4

]
. (62)

A plot of ĨD5 vs. |m̃| is presented in figure 6. The states from the lowest positive branch in

figure 6 have the lowest free energy and correspond to the stable phase of the theory. Therefore

there is a spontaneous breaking of the global SO(3) symmetry and the theory at m̃ = 0 develops

a negative condensate proportional to −c̃cr ≈ −0.59. Note that only the absolute value of m̃

corresponds to the bare mass of the fundamental fields. The states with negative m̃ correspond

to D5–brane embeddings that intercept the l̃ = 0 line in the l̃ vs. r̃ plane and as seen from

figure 6 are unstable. It is to be expected that the meson spectrum of the theory in such a

phase would contain tachyons based on an analogy with the meson spectrum of the D3/D7

system studied in ref. [12]. Before we proceed with the analysis of the meson spectrum of the

theory let us write an expression for the condensate of the theory 〈ψ̄ψ〉 ∝ −ccr = R2Hc̃cr at

zero bare quark mass. The coefficient of proportionality is given by [33]:

〈ψ̄ψ〉 = −8π2α′
µ5

gs
ccr = −16π3α′2

µ5

gs
c̃crR

2(H/2πα′) . (63)
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Figure 6: The states corresponding to the lowest positive branch of the plot in figure 5 have the
lowest free energy and thus correspond to the stable phase of the theory.

Note that the condensate is proportional to the magnitude of the magnetic field H/2πα′. In

order to check the consistency of our numerical analysis and to calculate more accurately the

constant c̃cr we have calculated the value of ccr for a range of H having set R = 1. The resulting

plot is presented in figure 7. The solid (black) line corresponds to the linear fit ccr ≈ 0.586H

therefore we have c̃cr ≈ 0.586.

100 200 300 H

50

100

150

Ccr

Figure 7: A plot of ccr vs. H for R = 1. The solid (black) line corresponds to the linear fit
ccr ≈ 0.586H.

3.3 Meson spectrum and pseudo-Golstone bosons

In this section we will analyze the normal modes of the D5–brane. These describe fluctuations

of the spinor bilinear in the dual gauge theory and hence their spectrum is the spectrum of

the light meson–like excitations of the gauge theory. We focus our analysis on the normal
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modes corresponding to the Goldstone bosons (which we label as pions here for simplicity) of

the spontaneously broken SO(3) symmetry and study their spectrum as a function of the bare

quark mass mq. Our study shows that the external magnetic field splits the degeneracy of the

meson spectrum and gives mass to one of the pions of the theory. It also modifies the standard

M2
π ∝ m GMOR relation for the remaining Goldstone mode to a linear relation Mπ ∝ m. We

will show that these results are in accord with the behavior expected from the effective chiral

Lagrangian of the theory.

In order to study the light meson spectrum of the theory we look for the quadratic fluctuations

of the D5–brane embedding along the transverse directions parametrized by l, ψ, φ. To this end

we expand:

l = l̄ + 2πα′δl; ψ = 2πα′δψ; φ = 2πα′δφ , (64)

in the action (50) and leave only terms of order (2πα′)2. Note that fluctuations of the U(1)

gauge field Fαβ of the D5–brane will also contribute to the expansion. There is also an additional

contribution from the Wess-Zumino term of the D5–brane’s action:

SWZ = Nfµ5

∫

M6

∑

p

[Cp ∧ eF ]; F = B + 2πα′F . (65)

For the anzatz that we are considering, the relevant term is:

SWZ = Nfµ5

∫

M6

B ∧ P [C̃4] , (66)

where P [C̃4] is the pull-back of the magnetic dual, C̃4, to the background C4 R-R form. For

the particular parameterization of S5 considered here, it is given by:

C̃4 =
1

gs

4r2l2

(r2 + l2)3
R4 sin ψ(ldr − rdl) ∧ dΩ2 ∧ dφ . (67)

After some long but straightforward calculations we get the following action for the quadratic

fluctuations along l:

L(2)
ll ∝

1

2

√
−EGll

Sαβ

1 + l′2
∂αδl∂βδl +

1

2

[
∂2

l

√
−E − d

dr

(
l′

1 + l′2
∂l

√
−E

)]
δl2 , (68)

L(2)
lF ∝

√
−E

1 + l′2
(∂lJ

12 − ∂rJ
12l′)F21δl ,

L(2)
FF ∝

1

4

√
−ESαβSγλFβγFαλ ,
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and along φ and ψ:

L(2)
ψψ,φφ ∝

1

2

√
−ESαβ(Gψψ∂αδψ∂βδψ + Gφφ∂αδφ∂βδφ) , (69)

L(2)
ψφ ∝ (cos α)PHδψ∂0δφ .

Here Eαβ is the pull-back of the generalized metric on the classical D5–brane embedding:

Eαβ = ∂αX̄µ∂βX̄ν(Gµν + Bµν) , (70)

and we have defined Sαβ and Jαβ as the symmetric and anti-symmetric elements of the inverse

generalized metric Eαβ:

Eαβ = Sαβ + Jαβ . (71)

The determinant E and the function K = P are given by:

√
−E = (cos α)r2

√
1 + l′2

√

1 +
R4H2

(r2 + l2)2
≡ g(r) cos α , (72)

P =
4R4r2l2

(r2 + l2)3
(rl′ − l) . (73)

As one can see, the fluctuations along ψ and φ decouple from the fluctuations along l and the

fluctuations of the gauge field Aα. Since we are interested in the pseudo-Goldstone modes of

the dual theory we will focus on the fluctuations along ψ and φ. The equations of motion

derived from the quadratic action (69) are the following:

∂r

(
g(r)l2

1 + l′2
∂rδψ

)
+

g(r)R4l2

(r2 + l2)2
!̃δψ +

g(r)l2

r2
∆(2)δψ − PH∂0δφ = 0 , (74)

∂r

(
g(r)l2

1 + l′2
∂rδφ

)
+

g(r)R4l2

(r2 + l2)2
!̃δφ +

g(r)l2

r2
∆(2)δφ + PH∂0δψ = 0 ,

where

!̃ = −∂2
0 +

∂2
1 + ∂2

2

1 + R4H2

(r2+l2)2

. (75)

Note that the background magnetic field breaks the SO(1, 2) Lorentz symmetry to SO(2),

which manifests itself in the modified laplacian (75). Next we consider a plane-wave ansatz:

δφ = ei(ωt−)k̇)x)η1(r); δψ = ei(ωt−)k̇)x)η2(r) , (76)

now using the anzatz (76) we get:

∂r

(
g(r)l2

1 + l′2
η′1

)
+

g(r)R4l2

(r2 + l2)2
(ω2 −

/k2

1 + R4H2

(r2+l2)2

)η1 − iωPHη2 = 0 , (77)

∂r

(
g(r)l2

1 + l′2
η′2

)
+

g(r)R4l2

(r2 + l2)2
(ω2 −

/k2

1 + R4H2

(r2+l2)2

)η2 + iωPHη1 = 0 .
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The equations of motion in (77) can be decoupled by the definition η± = η1 ± iη2. The result

is:

∂r

(
g(r)l2

1 + l′2
η′+

)
+

g(r)R4l2

(r2 + l2)2
(ω2 −

/k2

1 + R4H2

(r2+l2)2

)η+ − ωPHη+ = 0 , (78)

∂r

(
g(r)l2

1 + l′2
η′−

)
+

g(r)R4l2

(r2 + l2)2
(ω2 −

/k2

1 + R4H2

(r2+l2)2

)η− + ωPHη− = 0 .

Because of the broken Lorentz symmetry, the 1 + 2 dimensional mass M2 = ω2 − /k2 depends

on the choice of frame. We can define the spectrum of excitations as the rest energy (consider

the frame with /k = 0) and as we shall observe, the spectrum is discrete. Furthermore just as in

the D3/D7 case there is a Zeeman splitting of the spectrum due to the external magnetic field.

Interestingly, at low energy the splitting is breaking the degeneracy of the lowest energy state

and as a result there is only one pseudo-Goldstone boson. Note that this is not in contradiction

with the Goldstone theorem because there is no Lorentz symmetry. This opens the possibility

of having two types of Goldstone modes: type I and type II satisfying odd and even dispersion

relations correspondingly. In this case there is a modified counting rule (ref. [25], see also

ref. [31]) which states that the number of GBs of type I plus twice the number of GBs of type

II is greater than or equal to the number of broken generators. As we are going to show below

the single Goldstone mode that we see satisfies a quadratic dispersion relation (hence is type

II) and the modified counting rule is not violated. Note also that for large bare masses m (and

correspondingly large values of l) the term proportional to the magnetic field is suppressed and

the meson spectrum should approximate to the result for the pure AdS5 × S5 space-time case

studied in refs. [21, 22], where the authors obtained the following relation:

ωn =
2m

R2

√
(n + 1/2)(n + 3/2) , (79)

between the eigenvalue of the nth excited state ωn and the bare mass m.

In order to obtain the meson spectrum, we numerically solve the equations of motion (78) in

the rest frame (/k = 0). The quantization condition for the spectrum comes from imposing

regularity at infinity. More precisely we require that η± ∼ 1/r at infinity (r →∞). The results

are summarized in figure 8. Just as in the D3/D7 case we have defined the dimensionless

quantities m̃ = m/R
√

H and ω̃ = ωR/
√

H. As one can see from figure 8, for large m̃ the

spectrum asymptotes to that of pure AdS5×S5, given by equation (79). The Zeeman splitting

of the spectrum is also evident. It is interesting that as a result of the splitting of the ground

state there is only a single pseudo-Goldstone mode. Furthermore, as can be seen from figure 9,
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for small bare masses instead of the usual Gell-Mann–Oakes–Renner relation we obtain a linear

dependence ω̃ ∼ m̃. As we will show in the next subsection the slope is given by the relation:

ω̃ =
4c̃cr

π
m̃ ≈ 0.736m̃ . (80)

n!0
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Figure 8: The meson spectrum of the first three excited states is plotted. There is Zeeman splitting
of the spectrum and the existence of a mass gap at m̃ = 0 as well as a single Goldstone boson mode.
For large m̃ the spectrum asymptotes to that of zero magnetic field given by equation (79) (straight
lines).

It is also interesting to study the dispersion relation of the Goldstone mode. Since we have

broken Lorentz symmetry and observe only one pseudo-Goldstone mode (which is only half

the number of broken generators) we anticipate a quadratic dispersion relation (see refs. [31]

and [32] for discussion).

In order to obtain the dispersion relation of the Goldstone mode we numerically solve equations

(78) at very small bare mass m̃ ≈ 0.0007 and for a range of small momenta /̃k = /kR/
√

H. The

result is presented in figure 10. There is indeed a quadratic dispersion relation. As we are going

to show, the dispersion relation is given by:

ω̃ = γ/̃k
2

+
4

π
c̃crm̃ , (81)

where:

γ =
4

π

∞∫

0

dr̃
r̃2l̃2

√
1 + l̃′2

(r̃2 + l̃2)
√

1 + (r̃2 + l̃2)2

. (82)

For m̃ ≈ 0.0007 the relation (81) is given by:

ω̃ ≈ 0.232/̃k
2

+ 0.000515 , (83)
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Figure 9: Plot of the spectrum of the ground state from figure 8 for small bare masses. The dashed
line corresponds to the linear behavior from equation (80).

and is represented by the fitted curve in figure 10.
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Figure 10: Plot of the dispersion relation of the pseudo-Goldstone mode for m̃ ≈ 0.0007. The
parabolic fit corresponds to equation (83).

In the next subsections we will obtain the effective 1 + 2 dimensional chiral action describing

the pseudo-Goldstone mode and argue that in the limit ω → 0 it is identical to the action de-

scribing magnon excitations in a ferromagnet [11]. Furthermore we will show that the observed

dispersion relation (81) is in agreement with the dispersion relation of magnons in an external

magnetic field. Note that in order to make the analogy with a ferromagnet, one needs to iden-

tify the bare mass with the external magnetic field acting on the ferromagnet. The reason is

that these both correspond to the small parameter that explicitly breaks the global symmetry.
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3.3.1 Low energy dispersion relation

In order to obtain the dispersion relation for the pseudo-Goldstone mode we will analyze the

first equation in (78) in the spirit of the analysis performed in section 2.2.1 for the D3/D7

system. To begin with let us consider the limit of small ω thus leaving only the linear potential

term in ω̃. In view of the observed quadratic dispersion relation (81) we will also keep the /k2

term in equation (78).

∂r

(
g(r)l2

1 + l′2
η′+

)
−

(
ωPH +

g(r)R4l2

(r2 + l2)2 + R4H2
/k2

)
η+ = 0 . (84)

It is convenient to define the following variables:

Θ2 =
g(r)l2

1 + l′2
; ξ = η+Θ . (85)

Then equation (84) can be written as:

ξ̈ − Θ̈

Θ
ξ −

(
ωPH +

g(r)R4l2

(r2 + l2)2 + R4H2
/k2

)
ξ

Θ2
= 0 . (86)

Where the overdots represent derivatives with respect to r. Now if we take the limit m → 0

we have that ω → 0 and k → 0 and obtain that:

ξ = Θ|ω=0 ≡ Θ̄ , (87)

is a solution to equation (86). Our next step is to consider small m and expand:

ξ = Θ̄ + δξ ; Θ = Θ̄ + δΘ , (88)

where the variations δξ and δΘ are vanishing in the m → 0 limit. Then, to leading order in m

(keeping in mind that ω ∼ m and /k2 ∼ m) we obtain:

δξ̈ −
¨̄Θ

Θ̄
δξ − δ

(
Θ̈

Θ

)
Θ̄−

(
ωPH +

g(r)R4l2

(r2 + l2)2 + R4H2
/k2

)
1

Θ̄
= 0 . (89)

Now we multiply equation (89) by Θ̄ and integrate along r. The result is:

(Θ̄δξ̇ − ˙̄Θδξ)
∣∣∣
∞

0
− (Θ̄δΘ̇− ˙̄ΘδΘ)

∣∣∣
∞

0
− ωH

∞∫

0

drP (r)− π

4
R5
√

Hγ/k2 = 0 . (90)

Using the definitions of Θ, P (r) and ξ and requiring regularity at infinity for η+, one can show

that the first term in equation (90) vanishes and that:

(Θ̄δΘ̇− ˙̄ΘδΘ)
∣∣∣
∞

0
= cδm ;

∞∫

0

drP (r) = −R4π/4 , (91)
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and hence using the previous definitions, m̃ = m/R
√

H, c̃ = c/R2H, ω̃ = ωR/
√

H and
/̃k = /kR/

√
H, we obtain equation (81) which we duplicate below:

ω̃ = γ/̃k
2

+
4

π
c̃crm̃ . (92)

In the next subsection we will derive the effective 1 + 2 dimensional action for the pseudo-

Goldstone mode and show that to leading order it is in to one correspondence with the ef-

fective action describing magnon excitations in a ferromagnet corresponding to the SO(3) →
SO(2) spontaneous symmetry breaking by spontaneous magnetization [11]. We will relate the

fermionic condensate c̃ to the spontaneous magnetization of the ferromagnet and the bare mass

to the external magnetic field and show that the dispersion relation (92) is in exact agreement

with that of magnons.

3.3.2 Effective chiral Lagrangian

In order to obtain the 1+2 dimensional effective action describing the pseudo-Goldstone mode

we consider the 1 + 5 dimensional action (69) for a classical embedding in the vicinity of the

critical embedding, namely that embedding corresponding to a very small bare mass m̃. Now

let us consider the following ansätze for the fields δφ and δψ:

δφ =
ξ1(r)

Θ(r)
χ1(x) ; δψ =

ξ2(r)

Θ(r)
χ2(x) . (93)

Since we are close to the critical embedding we will consider the same expansion as in equa-

tion (88):

ξi = Θ̄ + δξi , i = 1 or 2 ; Θ = Θ̄ + δΘ . (94)

By definition it follows that as m̃ → 0, δξi and δΘ vanish. Then to leading order we have that:

∂rδφ =
1

Θ̄2
[(Θ̄δξ̇1 − ˙̄Θδξ1) + ( ˙̄ΘδΘ− Θ̄δΘ̇)]χ1(x) ; ∂µδφ = ∂µχ1(x) ; µ = 0, 1, 2 , (95)

∂rδψ =
1

Θ̄2
[(Θ̄δξ̇2 − ˙̄Θδξ2) + ( ˙̄ΘδΘ− Θ̄δΘ̇)]χ2t(x) ; ∂µδψ = ∂µχ2(x) ; µ = 0, 1, 2 .

Now we integrate equation (69) along r from 0,∞ and along the internal unit sphere Ω̃2. The

interesting term is the part of the kinetic term involving derivatives along r. After integration

by parts it boils down to a mass term for the 1 + 2 dimensional fields χ1, χ2. Explicitly:
∫

drdΩ̃2
1

2

g(r)l2

1 + l′2
∂rδφ∂rδφ = −

∫
drdΩ̃2

1

2
∂r

(
g(r)l2

1 + l′2
∂rδφ

)
δφ = (96)

= −4π[(Θ̄δξ̇1 − ˙̄Θδξ1) + ( ˙̄ΘδΘ− Θ̄δΘ̇)]
∣∣∣
∞

0

1

2
χ2

1 = 4πmc
1

2
χ2

1 .
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Here we have used the same arguments as in equation (90). It is clear that one can perform

an analogous calculation for the term involving ∂rδψ. The rest of the terms are dealt with

straightforwardly by integrating along r. The resulting action is:

Seff

(2πα′)2
=

∫
d3x

{
f 2

π||

4
∂0χ

∗∂0χ−
f 2

π⊥
4

∂iχ
∗∂iχ− µ

i

2
(χ∂0χ

∗ − χ∗∂0χ) +
mq

2
〈Ψ̄Ψ〉0χ

∗χ

}
, (97)

where we have defined a complex scalar field χ = χ1 + iχ2. The constants in the effective action

are given by:

f 2
π||

4
=
N
2

∞∫

0

dr
g(r)R4l2

(r2 + l2)2
;

f 2
π⊥
4

=
N
2

∞∫

0

dr
g(r)R4l2

(r2 + l2)2 + R4H2
, (98)

µ =
N
8

πR4H; 〈ψ̄ψ〉 = −(2πα′)N ccr ; N = 4πNf
µ5

gs
; mq =

m

2πα′
.

The effective action (97) is very similar to the one considered in ref. [31], where the author

studied Goldstone bosons in linear sigma models with chemical potential, only we have further

broken the Lorentz symmetry by the introduction of an external magnetic field. The peculiar

feature of this effective Lagrangian is the single time derivative term that is responsible for the

unusual quadratic dispersion relation. In ref. [31] the authors have shown that the number of

goldstone modes with quadratic dispersion relation is half the number of broken generators.

This is exactly what we observe here (two broken generators but only a single goldstone mode).

On the other hand, for the pseudo-Goldstone mode ω → 0 and to leading order the effective

action (97) can be written as:

Sf
eff =

∫
d3x

{
1

2
Σεab∂0U

aU b − Σβh
1

2
Ua2 − 1

2
F 2∂iU

a∂iU
a

}
; a = 1 or 2 , (99)

where

Ua = (2πα′)χa ; Σ = 2µ; F 2 =
f 2

π⊥
2

; βh = −mq〈ψ̄ψ〉
2µ

= c̃crm̃
4
√

H

πR
. (100)

Equation (99) corresponds to the effective action describing a ferromagnet in an external mag-

netic field h with a spontaneous magnetization Σ and a magnetic coupling β [11]. Here
/U = (U1, U2, U3) is a unit vector corresponding to the direction of the spontaneous mag-

netization of the ferromagnet, and the action (99) is describing quadratic fluctuations of the

magnetization near the ordered state U3 = 1. The fact that the effective external magnetic field

h is proportional to the bare mass m̃ is to be expected since in both descriptions these are the

small parameters that reduce the exact global symmetry to an approximate one by coupling to
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the corresponding order parameters (magnetization and quark condensate corresponding). If

one takes into account the re-definitions from equation (100) and the definitions of ω̃ and /̃k, it

is straightforward to check that the dispersion relation of ferromagnetic spin waves [11]:

ω = γk2 + βh ; γ =
F 2

Σ
, (101)

is exactly that of equation (81).

Of course many different microscopic systems exhibit the same low energy behavior and hence

are described by the same effective Lagrangian. Furthermore the fact that the mass generation

process in the D3/D5 system is associated to precisely the same global symmetry breaking

pattern (SO(3) → SO(2)) as the transition from paramagnetic to ferromagnetic phase is also

very suggestive. However it is the peculiar single derivative term coming from the Wess-

Zumino contribution that is responsible for the observed dispersion relation. Here we have

not investigated how far one can go in describing properties of ferromagnets using the D3/D5

set up. It would be interesting to study interaction terms, which would require expanding the

effective action beyond quadratic order. In any case it is somewhat satisfying that the dispersion

relation of pseudo–Goldstone modes can be related to a real condensed matter phenomenon

such as magnon spin waves.

4 Universal properties of magnetic catalysis in Dp/Dq
systems

In this section we focus on some universal features of the mechanism of spontaneous symmetry

breaking in an external magnetic field in the context of the Dp/Dq system. In particular we

explore the observed discrete self–similar behavior of the theory in the vicinity of the trivial

embedding l ≡ 0 corresponding to the non-symmetry breaking phase. As we mentioned in

Section 2 and Section 3, for the D3/D7 and the D3/D5 systems, this embedding is unstable

and the instability is manifested as a multi-valuedness of the equation of state in the condensate

versus bare mass plane (m̃, c̃) seeded by a logarithmic spiral structure (see figure 2 and figure 5).

This spiral structure has been explored in details in ref. [5] in the case of the D3/D7 set up. It

has been shown that the spectrum of meson–like excitations also exhibits discrete self–similar

structure in the tachyonic sector of the theory. It is interesting that the same structure appears

for other first order phase transition in the Dp/Dq set up, such as the meson melting [33] and

electrically driven insulator/conductor phase transitions [34], [35]. In ref. [33] it was pointed

out that the critical exponents (or more appropriately “scaling exponents”) characterizing the
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logarithmic structure exhibit universal properties and depend only on the dimension of the

internal Sn sphere wrapped by the Dq–brane. A similar analysis was performed in ref. [35] for

the case of electrically and R-charge chemical potential driven phase transitions and another set

of “scaling exponents” was obtained. Here we will extend the analysis of the spiral structure in

the case of the D3/D7 system performed in ref. [5] to the general case of Dp/Dq systems T-dual

to the D3/D7 intersection and will show that the corresponding scaling exponents guarantee the

existence of a discrete self–similar behavior in all Dp/Dq systems of potential phenomenological

interest. This suggests the universal role of the external magnetic field as a strong catalyst of

mass generation.

To begin with, let us consider the zero temperature Dp–brane solution, given by:

ds2 = K
− 1

2
p

(
−dt2 +

p∑

i=1

dx2
i

)
+ K

1
2
p

(
du2 + u2dΩ2

8−p

)
, (102)

eΦ = gsK
(3−p)/4
p ; C01...p = K−1

p ,

where Kp(u) = (R/u)7−p and R is a length scale (the AdS radius in the p = 3 case). Now

if we introduce a Dq–brane probe having d common space–like directions with the Dp–brane,

wrapping an internal Sn ⊂ S8−p and extended along the holographic coordinate u, we will intro-

duce fundamental matter to the dual gauge theory that propagates along a (d+1)–dimensional

defect.

Next we parameterize the transverse 9− p plane du2 + u2dΩ2
8−p by:

dρ2 + dL2 + ρ2dΩ2
n + L2dΩ2

7−p−n , (103)

where dΩ2
m is the metric on a unit radius m–sphere and ρ2 + L2 = u2. We also introduce an

external magnetic field H/2πα′, corresponding to the Fp−1,p component of the field strength

tensor, by fixing a constant B-field in the (xp−1, xp) plane:

B(2) = Hdxp−1 ∧ dxp . (104)

Then the DBI part of the Lagrangian governing the classical embedding of the probe is given

by1:

L ∝ e−Φ
√
−|gαβ| =

√
|Ωn|
gs

ρn
√

1 + L′2

√
1 +

H2R7−p

(ρ2 + L2)
7−p
2

. (105)

1We consider only systems T–dual to the D3/D7 one, which imposes the constraint p− d + n + 1 = 4.
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The equation of motion for the classical Dq–brane embedding is given by:

∂ρ

(
ρnL′√
1 + L′2

√
1 +

H2R7−p

(ρ2 + L2)
7−p
2

)
+

7− p

2

ρn
√

1 + L′2

(ρ2 + L2)
9−p
2

LH2R7−p

√
1 + H2R7−p

(ρ2+L2)
7−p
2

= 0 . (106)

For large ρ → ∞ the second term in equation (106) vanishes and the solution L(ρ) has the

asymptotic behavior:

L(ρ) = m +
c

ρn−1
+ · · · , (107)

which encodes [14, 18] the bare quark mass mq = m/2πα′ and the quark bilinear condensate

〈ψ̄ψ〉 ∝ −c of the dual gauge theory.

It is also clear that the equation of motion (106) has a trivial solution L(ρ) ≡ 0, which preserves

the rotational symmetry in the 8− p−n plane transverse to both the Dp and Dq–branes. This

solution has zero bare quark mass and corresponds to the non-symmetry breaking phase of the

dual gauge theory. The solutions in the vicinity of L ≡ 0 are unstable and correspond to the

interior of the spiral structure that we are studying. In order to obtain the scaling exponents

characterizing the spiral we will zoom in on the region close to the origin of the (ρ, L) plane.

We first introduce dimensionless variables via:

ρ = ρ̃RH
2

7−p ; L = L̃RH
2

7−p ; m̃ = mRH
2

7−p ; c = c̃RnH
2n

7−p ; (108)

and now rescale:

ρ̃ = λρ̂ ; L̃ = λL̂ . (109)

In the limit λ → 0 equation (106) becomes:

∂ρ̂

(
ρ̂n

(ρ̂2 + L̂2)
7−p
4

L̂′√
1 + L̂′2

)
+

7− p

2

√
1 + L̂′2

ρ̂nL̂

(ρ̂2 + L̂2)
11−p

4

= 0 . (110)

The solutions to equation (110) have the scaling property that if L̂(ρ̂) is a solution, then so is
1
µ L̂(µρ̂). In order to explore the vicinity of the critical L̂ ≡ 0 solution we define L̂ = 0 + ζ(ρ̂)

and linearize with respect to ζ, the result is:

∂ρ̂(ρ̂
n− 7−p

2 ζ ′) +
7− p

2
ρ̂n− 11−p

2 ζ = 0 . (111)

Next we look for solutions of equation (111) of the form ζ = ρ̂ν . The quadratic equation for ν

that we obtain is:

2ν2 + (n + d− 6)ν + (n− d + 4) = 0 . (112)
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We have used the constraint p = 3 + d − n. Now in order to have a logarithmic spiral (which

seeds the multi-valuedness of the equation state) we need to have two complex roots. The

condition for that is:

(n + d− 6)2 < 8(n− d + 4) . (113)

Note that in order to be able to turn on a magnetic field we need d ≥ 2. In addition we are

not interested in theories with d > 3. It is then easy to check that for all possible values of n

(clearly n < 5) the condition (113) is satisfied. Then the roots of equation (112) ν± are given

by:

ν± = −rn,d± iαn,d ; rn,d =
n + d− 6

4
≥ −3

4
; αn,d =

1

4

√
8(n− d + 4)− (n + d− 6)2 . (114)

The inequality in the second formula in equation (114) is saturated for the minimum possible

values (n, d) = (1, 2). The most general solution of equation (111) can then be written as:

ζ(ρ̂) =
1

ρ̂rn,d
(A cos(αn,d ln ρ̂) + B sin(αn,d ln ρ̂)) . (115)

Now the scaling property of equation (110) suggests the following transformation of the param-

eters (A, B) under re-scaling of the initial condition L̂(0) ≡ L0 → 1
µ L̂0:

(
A′

B′

)
=

1

µrn+1

(
cos (αn ln µ) sin (αn ln µ)
− sin (αn ln µ) cos(αn ln µ)

) (
A
B

)
. (116)

For a fixed choice of the parameters A and B, the parameters (A′, B′) describe a logarithmic

spiral, whose step and periodicity are set by the real and imaginary parts of the critical/scaling

exponents rn,d and αn,d. Note that from the inequality in equation (114) it follows that rn,d+1 ≥
1
4 > 0 and hence the spiral is revolving as one scales away from the critical L̂ ≡ 0 solution.

This self–similar structure of the embeddings near the critical solution L̂ ≡ 0 in our zoomed in

region parameterized by (ρ̂, L̂) is transferred by a linear transformation to the structure of the

solutions in the (m, c) parameter space. The parameters corresponding to the critical L ≡ 0

embedding are given by (0, 0). Then sufficiently close to the critical embedding we can expand:
(

m
c

)
= M

(
A
B

)
+O(A2, B2, AB) . (117)

The constant matrix M depends on the properties of the system. Generically it should be

invertible (numerically we have verified that this is the case) and therefore in the vicinity of the

parameter space close to the critical embedding (m, c) there is a discrete self–similar structure

determined by the transformation:
(

m′

c′

)
=

1

µrn+1
M

(
cos (αn ln µ) sin (αn ln µ)
− sin (αn ln µ) cos(αn ln µ)

)
M−1

(
m
c

)
. (118)
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Note that the linear map corresponding to the constant matrix M would rotate, stretch and/or

shrink (along the different axes) the spiral defined via the transformation (116). However the

overall shape of the curve defined via equation (118) still remains a spiral revolving around

the origin of the (m̃, c̃) plane (see figure 5 for the case of the D3/D7 system). This suggests

that the state corresponding to the center of the spiral (the L ≡ 0 solution) is unstable and

hence there is a dynamical mass generation in the theory. (The stable state at zero bare quark

mass has a non–zero condensate) Therefore we learn that for all Dp/Dq systems T–dual to the

D3/D7 intersection (and with d ≥ 2 so that a magnetic field can be switched on) the effect of

the magnetic field is to break a global internal symmetry and generate a dynamical mass.

To conclude this discussion we will provide a numerical check of the consistency of our analysis.

To this end we consider the separation of the Dq and Dp branes at Lin ≡ L(0) (note that Lin

is proportional to the dynamically generated quark mass). Now if we start from some L0
in and

transform to Lin = 1
µL0

in, we can solve for µ and generate a parametric plot of m̃/(L̃in)rn,d+1

vs. αn,d log L̃in/2π. The transformation (118) requires that the resulting plot be an harmonic

function of unit period. For the particular case of the D3/D5 system we have r2,2 = −1/2 and

α2,2 =
√

7/2. The corresponding plot is presented in figure 11. For sufficiently small L̃in the

plot is indeed an harmonic function of unit period.
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Figure 11: A plot of
√

7
4π log L̃in vs. m̃/L̃1/2

in . For sufficiently small L̃in the curve is an harmonic
function of unit period.
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5 Conclusion

In this paper we have investigated the properties of strongly coupled, large Nc gauge theories

in the presence of an external magnetic field. Both in three and four dimensions, the holo-

graphic approach reproduces the behavior expected from classical field theory arguments and

the magnetic catalysis of global symmetry breaking is shown to be a universal feature of a

family of strongly coupled gauge theories. This is another success for the internal consistency

of the gauge/gravity duality.

As has now become commonplace in such studies, the spectrum of mesonic states is directly

identifiable by numerical methods. Moreover, in the present study we are able to make a large

number of statements analytically by studying the systems in the chiral limit. Indeed in this

regime, in which the global symmetry is broken dynamically due to the presence of the magnetic

field the results are almost completely tractable analytically.

In 3+1 dimensions we are able to show that the Gell-Mann–Oakes–Renner relation holds exactly

and in this setting where a subgroup of the special relativistic transformations remains unbroken

in the presence of the magnetic field, a relativistic dispersion relation is indeed recovered. In

the 2 + 1 dimensional case however, all trace of the boost invariance is lost once the magnetic

field is turned on. The counting of Goldstone modes then becomes more subtle but we are

able to show that this holographic setup gives the correct number of massless modes expected

from the non-relativistic Goldstone counting rules. In addition we are able to show that these

modes obey a quadratic dispersion relation, in contrast to the relativistic case in one spatial

dimension higher.

In the present investigation we have focused on the low energy chiral lagrangian, calculated up

to quadratic order in the goldstone mode excitations. In the 2 + 1 dimensional setting we were

able to show explicitly that at this order our system reproduces the low energy behavior of

spin-wave excitations in a ferromagnet. The matching of symmetry breaking patterns between

the two systems is the root of this equality. It seems unlikely however that such an agreement

will hold to higher order. It would certainly be possible to investigate the systems discussed

here at higher order in the low energy degrees of freedom and this would be an interesting

direction for future work.

The study of flavor degrees of freedom in a wide range of conditions is certainly well worth

pursuing further using the methods illustrated in this paper. The magnitude of the phase-

space involved with studying flavor, both abelian and non-abelian, in the presence of external

electric fields and magnetic fields, temperature and finite chemical potential in a variety of
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dimensions means that there is surely plenty more to be found in even the simplest systems.

In the case of 2 + 1 dimensions, the understanding of gauge theories in the presence of low

temperature and high magnetic field is of much interest. In particular this is one area which

may be accessible experimentally and one may be able to gain insight into such intriguing

phenomena as the quantum hall effect. It seems very likely that we will make further inroads

into understanding such effects using the AdS/CFT correspondence in the not too distant

future.

The diversity of phenomena that we can investigate using holographic techniques is clearly

far larger than was expected in the early days of the AdS/CFT conjecture. The prospects of

obtaining deep insight into such fascinating systems as non-conventional superconductors, the

quantum hall effect and strongly coupled plasmas are real and exciting and the community

continues to make progress in these directions.

6 Acknowledgements

We would like to thank B. Doulen, N. Evans, D. O’Connor, J. Erdmenger, P. Kraus, B. Queshi,

R. Meyer, C. Nunez and A. O’Bannon for useful comments and suggestions. V.F. would like

to thank University of Santiago de Copmostela and Max Planck Institute for Physics for their

hospitality at the final stage of this project. The work of V.F. was supported by a IRCSET

fellowship. The work of C.V.J. was supported by the US Department of energy. The work

of J.S was supported in part by MICINN and FEDER (grant FPA2008-01838), by Xunta de

Galicia (Consellera de Educacin and grant PGIDIT06PXIB206185PR), and by the Spanish

Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042). J.S is supported by a Juan de

la Cierva fellowship.

36



Appendices

A Low energy effective action for Φ

Let us begin with the Lagrangian for the quadratic fluctuations equation (11)

LΦΦ = −(2πα′)2µ7

gs

1

2

√
|gS3| gR2L2

0

ρ2 + L2
0

Sab∂aΦ∂bΦ , (119)

LΦA = −(2πα′)2µ7

gs

√
|gS3|H∂ρKΦF01 ,

LAA = −(2πα′)2µ7

gs

√
|gS3|1

4
gSaa′Sbb′FabFa′b′ .

In order to obtain an effective action for the fluctuations along Φ we will integrate out the

fluctuations of the gauge field and in particular the A0, A1 components. In more detail the

contribution from the last two equations in equation (119) can be written as:

LAA + LΦA ∝ 1

2
gS11Saa′(−∂aA0∂a′A0 + ∂aA1∂a′A1)−

1

2
g(S11)2(∂0A0 − ∂1A1)

2 (120)

+H∂ρKΦF01 .

To integrate out the A0, A1 components of the gauge field we simply obtain the equations of

motion for A0 and A1 and substitute them into the action. The equations of motion are:

∂a(gS11Saa′∂aA0) + g(S11)2∂0(∂0A0 − ∂1A1) + H∂ρK∂1Φ = 0 , (121)

∂a(gS11Saa′∂aA1) + g(S11)2∂1(∂0A0 − ∂1A1) + H∂ρK∂0Φ = 0 ,

which can be written as:

∂a

(
gS11Saa′∂aF01

)
−H∂ρK!(1,1)Φ = 0 ; !(1,1) ≡ −∂2

0 + ∂2
1 , (122)

∂a

(
gS11Saa′∂a(∂0A0 − ∂1A1)

)
− g(S11)2!(1,1)(∂0A0 − ∂1A1) = 0 .

Substituting back into the action (120) and integrating by parts leads to:

LAA + LΦA ∝ −
1

2
HK∂ρ(ΦF01) . (123)

The equation of motion for F01 can be written as:

∂ρF01 =
HK

Ψ2
1

!(1,1)Φ−
1

Ψ2
1

∫
dρg(S11)2!̃F01 , (124)
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where Ψ1 is defined in equation (22). Now we substitute into the action (123) and denote by

Φ̃(x) the dimensionally reduced field Φ, to obtain:

LAA + LΦA = (2πα′)2µ7

gs

√
|gS3|1

2

H2K2

Ψ2
1

Φ̃!(1,1)Φ̃ + . . . , (125)

where we have ignored higher order derivatives terms. Combining this with the dimensionally

reduced term LΦΦ we obtain the result:

L ∝ 1

2
(νΨ2 +

H2K2

Ψ2
1

)[−(∂0Φ̃)2 + (∂1Φ̃)2] +
1

2
ν̃Ψ2[(∂2Φ̃)2 + (∂3Φ̃)2] + . . . . (126)

Where ν, ν̃ and Ψ are defined in equation (22). In order to obtain a mass term for the dimen-

sionally reduced field Φ̃ we have to take into account the radial dependence of the field Φ. Our

analysis from Section 2.2.1 suggests that we should consider the following ansatz:

Φ(ρ, x) =
ψ(ρ)

Ψ(ρ)
Φ̃(x) , (127)

where Ψ is defined in equation (22) and we require that for the spontaneous symmetry breaking

classical embedding (denoted by L̄0) we have that ψ|L̄0
= Ψ|L̄0

≡ Ψ̄. Then if we consider

embeddings in the vicinity of L̄0 corresponding to small bare quark mass δm we can expand:

ψ = Ψ̄ + δψ ; Φ(ρ, x) =

[
1 + δ

(
ψ

Ψ

)]
Φ̃(x) . (128)

Now if we demand that as δm → 0 we have small momenta and a small mass term (which

vanish at the critical embedding) to leading order we still have the expression from equation

(126) plus some small mass term involving derivatives along ρ:

L ∝ 1

2
(ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

)[−(∂0Φ̃)2 + (∂1Φ̃)2] +
1

2
¯̃νΨ̄2[(∂2Φ̃)2 + (∂3Φ̃)2]

−1

2
∂ρ

[
Ψ̄2∂ρδ

(
ψ

Ψ

)]
Φ̃2 + . . . , (129)

where we have integrated by parts the last term and the dots represent higher derivatives terms

and other sub-leading terms. Now it is straightforward to integrate along the unit S3 and the

radial coordinate ρ. Let us provide some more details in the integration of the mass term:

∞∫

0

dρ∂ρ

[
Ψ̄2∂ρδ

(
ψ

Ψ

)]
Φ̃2 =

[
(Ψ̄δψ′ − δψΨ̄′) + (δΨΨ̄′ − δΨ′Ψ̄)

]
Φ̃2

∣∣∣
∞

0
= −2cδmΦ̃2 . (130)

Then for the final form of the effective action one obtains:

Seff = −N
∫

d4x

{
[−(∂0Φ̃)2 + (∂1Φ̃)2] + γ[(∂2Φ̃)2 + (∂3Φ̃)2]− 2〈ψ̄ψ〉

f 2
π

mqΦ̃
2

}
+ . . . , (131)
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where:

N = (2πα′)2Nf
µ7

gs
π2

∞∫

0

dρ

[
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

]
; f 2

π =
4N

(2πα′)2
; mq =

δm

2πα′
, (132)

γ =

∞∫

0

dρ
(
¯̃νΨ̄2

) / ∞∫

0

dρ

(
ν̄Ψ̄2 +

H2K̄2

Ψ̄1
2

)
; 〈ψ̄ψ〉 = − Nf

(2πα′)3

c

2πgs
. (133)

One can see that this is the most general quadratic action consistent with the SO(1, 1)×SO(2)

space-time symmetry. Furthermore the explicit form of the mass term is in accord with the

Gell-Mann–Oakes–Renner relation (37). To obtain the expression for f 2
π provided in equation

(132) one needs to consider the strict mq → 0 limit and use that in this limit Φ̃ = φ/(2πα′).

Next since φ corresponds to rotations in the transverse R2 plane and is thus the angle of chiral

rotation [18], the normalization of the kinetic term in the effective action (131) is given by

N = (2πα′)2f 2
π/4. The last relation determines f 2

π in terms of N .
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