25,867 research outputs found

    Coefficients and terms of the liquid drop model and mass formula

    Get PDF
    The coefficients of different combinations of terms of the liquid drop model have been determined by a least square fitting procedure to the experimental atomic masses. The nuclear masses can also be reproduced using a Coulomb radius taking into account the increase of the ratio R_0/A1/3R\_0/A^{1/3} with increasing mass, the fitted surface energy coefficient remaining around 18 MeV

    Dilution jet mixing program, phase 3

    Get PDF
    The objectives of the program were: (1) to extend the data base on mixing of a single-sided row of jets with a confined crossflow, (2) to collect a data base on mixing of multiple rows of jets with confined crossflow, (3) to develop empirical jet mixing correlations, and (4) to perform limited three-dimensional calculations for some of these test configurations. The tests were performed with uniform mainstream conditions for several orifice plate configurations. Schematics of the test section and the orifice configurations are given. Temperature and pressure measurements were made in the test section at 4 axial and 11 transverse stations, using a 60-element rake probe. The measured temperature distributions for these tests are reported

    PNJL model for adjoint fermions

    Full text link
    Recent work on QCD-like theories has shown that the addition of adjoint fermions obeying periodic boundary conditions to gauge theories on R^3 X S^1 can lead to a restoration of center symmetry and confinement for sufficiently small circumference L of S^1. At small L, perturbation theory may be used reliably to compute the effective potential for the Polyakov loop P in the compact direction. Periodic adjoint fermions act in opposition to the gauge fields, which by themselves would lead to a deconfined phase at small L. In order for the fermionic effects to dominate gauge field effects in the effective potential, the fermion mass must be sufficiently small. This indicates that chiral symmetry breaking effects are potentially important. We develop a Polyakov-Nambu-Jona Lasinio (PNJL) model which combines the known perturbative behavior of adjoint QCD models at small L with chiral symmetry breaking effects to produce an effective potential for the Polyakov loop P and the chiral order parameter psi-bar psi. A rich phase structure emerges from the effective potential. Our results are consistent with the recent lattice simulations of Cossu and D'Elia, which found no evidence for a direct connection between the small-L and large-L confining regions. Nevertheless, the two confined regions are connected indirectly if an extended field theory model with an irrelevant four-fermion interaction is considered. Thus the small-L and large-L regions are part of a single confined phase.Comment: 6 pages, 4 figures; presented at INPC 201

    Dilution jet mixing program, phase 3

    Get PDF
    The main objectives for the NASA Jet Mixing Phase 3 program were: extension of the data base on the mixing of single sided rows of jets in a confined cross flow to discrete slots, including streamlined, bluff, and angled injections; quantification of the effects of geometrical and flow parameters on penetration and mixing of multiple rows of jets into a confined flow; investigation of in-line, staggered, and dissimilar hole configurations; and development of empirical correlations for predicting temperature distributions for discrete slots and multiple rows of dilution holes

    Black Holes with a Generalized Gravitational Action

    Full text link
    Microscopic black holes are sensitive to higher dimension operators in the gravitational action. We compute the influence of these operators on the Schwarzschild solution using perturbation theory. All (time reversal invariant) operators of dimension six are included (dimension four operators don't alter the Schwarzschild solution). Corrections to the relation between the Hawking temperature and the black hole mass are found. The entropy is calculated using the Gibbons-Hawking prescription for the Euclidean path integral and using naive thermodynamic reasoning. These two methods agree, however, the entropy is not equal to 1/4 the area of the horizon.Comment: plain tex(uses phyzzx.tex), 8 pages, CALT-68-185

    Lunar contour mapping system /lucom/ final report, 5 aug. 1964 - 18 mar. 1965

    Get PDF
    Radar sensor system for acquisition of lunar surface data - Lunar contour mapping syste

    Liquid-Drop Model and Quantum Resistance Against Noncompact Nuclear Geometries

    Get PDF
    The importance of quantum effects for exotic nuclear shapes is demonstrated. Based on the example of a sheet of nuclear matter of infinite lateral dimensions but finite thickness, it is shown that the quantization of states in momentum space, resulting from the confinement of the nucleonic motion in the conjugate geometrical space, generates a strong resistance against such a confinement and generates restoring forces driving the system towards compact geometries. In the liquid-drop model, these quantum effects are implicitly included in the surface energy term, via a choice of interaction parameters, an approximation that has been found valid for compact shapes, but has not yet been scrutinized for exotic shapes.Comment: 9 pages with 3 figure

    Two-dimensional dilaton black holes

    Get PDF
    The two-dimensional CGHS model provides an interesting toy-model for the study of black hole evaporation. For this model, a quantum effective action, which incorporates Hawking radiation and backreaction, can be explicitly constructed. In this paper, we study a generalization of this effective action. In our extended model, it is possible to remove certain curvature singularities arising for the original theory. We also find that the flux of Hawking radiation is identical to that encountered in other two-dimensional models

    Enhancing the work of the Islington Integrated Gangs Team: A pilot study on the response to serious youth violence in Islington

    Get PDF
    This report is the result of research conducted by the Centre for City Criminology at City, University of London, in partnership with Islington’s Integrated Gangs Team (IGT) and the Metropolitan Police Service (MPS). The research was co-funded by MPS and the School of Arts and Social Sciences, City, University of London. Following a collaborative research event in October 2017, City Criminologists were commissioned to carry out a small-scale research project to capture the work of the IGT and to make recommendations regarding its operations, coherence, effectiveness and sustainability. The research team conducted semi-structured interviews over several months with 23 practitioners across the services that constitute the IGT. This report presents the findings and recommendations
    • …
    corecore