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Abstract. The two-dimensional CGHS model provides an interesting toy-

model for the study of black hole evaporation. For this model, a quantum

e�ective action, which incorporates Hawking radiation and backreaction, can

be explicitly constructed. In this paper, we study a generalization of this

e�ective action. In our extendedmodel, it is possible to remove certain curva-

ture singularities arising for the original theory. We also �nd that the 
ux of

Hawking radiation is identical to that encountered in other two-dimensional

models.

1 Introduction

In 1992, Callan, Giddings, Harvey and Strominger (CGHS) presented an in-

teresting two-dimensional toy-model (Callan et al. [1992]) for the study of black

hole evaporation (Hawking [1975]). Much greater analytic progress can be made

in studying such a two-dimensional model because of the fewer number of degrees

of freedom and reduced complexity as compared to gravity in four dimensions.

However in two dimensions, one cannot use the Einstein action because it leads to

trivial equations of motion. In the CGHS model, an extra scalar �eld, the dilaton,

is included to produce a nontrivial theory of gravity. The \classical" CGHS model

is based on the string-inspired action:

S0 =
1

2�

Z
d2x
p
�g

(
e�2�[R+ 4(r�)2 + 4�2]� 1

2

NX
i=1

(rfi)2
)

: (1.1)

This theory couples the two-dimensional metric, gab, and the dilaton, �, to N

massless scalar �elds, fi. It also includes a cosmological constant, �2.

In fact, the general solution for this theory may be constructed analytically

(Callan et al. [1992]). Usually, the solutions are written in the conformal gauge

where the metric is given in diagonal form as:

g�� = 0 g+� = �1
2

e2�
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where we use the null coordinates de�ned by x� = t � x. The general solution

includes many black hole solutions. The simplest of these is the eternal black hole,

in which all of the matter �elds are set to zero. In Kruskal gauge with � = � (Callan

et al. [1992]), one has:

e�2� = e�2� =
M

�
� �2x+x�

where M is the mass of the black hole as it can be seen by a computation of the

Bondi mass (Callan et al. [1992]). This solution has the same causal structure as

the extended Schwarzschild black hole, with future and past spacelike singularities.

With M = 0, one is left with the linear dilaton vacuum. In this case, the metric

describes 
at two-dimensional Minkowski space while (in appropriate coordinates)

the dilaton increases linearly in the spatial direction.

Other solutions describe the formation of a black hole from the collapse of a

shell of matter. One example, which contains an in�nitely thin shell (or shock

wave) collapsing along x+ = x+0 , has:

e�2� = e�2� = ��2x+x� �m (x+ � x+0 )�(x
+ � x+0 ) :

This solution is divided in two di�erent regions as we see from the step function

�(x+ � x+0 ). In the �rst region below the infall line (x+ < x+0 ), the solution

corresponds to the linear dilaton vacuum. The region above the infall line (x+ >

x+0 ) is a portion of the eternal black hole with an event horizon located at x� =

�m=�2. Thus it contains the future spacelike singularity.

1.1 One-loop e�ective action The previous black hole solutions are clas-

sical, and so they do not include Hawking radiation. In order to study the latter,

we must include quantum e�ects. One approach is to de�ne the quantum theory

with the following functional integral:

Z =

Z
DgD�Dfi eiSDG(g;�)+iSM (g;fi)

(1.2)

where SDG and SM denote the pure dilaton-gravity and the matter contributions

to the action S0, respectively. Actually, we cannot perform this functional integral

completely, but we can compute the matter functional integral which is a simple

Gaussian. One �nds: Z
Dfi eiSM (g;fi)

= eiS1(g)

where S1(g) is the Polyakov action, which may be written in a covariant non-local

form (Polyakov [1981]):

S1 = �
�

8�

Z
d2x
p
�g R 1

r2
R (1.3)

where � � N=12, and 1=r2
is the Green's function for the scalar d'Alembertian

r2
. This action can also be written in a local form in conformal gauge. This one-

loop contribution combined with S0 yields a quantum e�ective action for the CGHS

theory. Solutions of this e�ective action incorporate Hawking radiation and backre-

action at least to leading order in a 1=N expansion for large N . Unfortunately, it is

apparently not possible to solve the resulting equations of motion exactly, although

some qualitative results have been produced.
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2 Generalized model

The measure used in the functional integral (1.2) is not uniquely de�ned, and

one can de�ne alternative theories with di�erent measures. Explicitly, this means

that we can build new theories by adding local, covariant counterterms to the

Polyakov action S1. Here, we exploit this freedom to build a generalization of the

previous quantum e�ective action, and look at the e�ects of the new interactions on

black hole physics. Our extended action will be S = S0+S1+S2+S3, where S0 is

the classical CGHS action (1.1) and S1 is the Polyakov action (1.3). The remaining

terms are:

S2 = �
�

8�

Z
d2x
p
�g

�
��R+ �(r�)2

�

S3 = �
�

8�

Z
d2x
p
�g

KX
n=2

�
an�

nR+ bn�
n�1

(r�)2
�

where �, �, an and bn are coupling constants, and K � 2 is some integer. One

of our objectives in selecting the coupling constants will be to produce an exactly

soluble theory. A condition which will achieve this result is requiring the simple

current equation (Russo et al. [1992], Kazama et al. [1995]):

@+@�(� � �) = 0 :

The di�erence between T+� and the dilaton equation of motion yields the above if

we set:

� = 4� 2�

bn = �2nan :

Note that further setting � = 2 and an = 0 (and hence � = 0 = bn) produces the

model of Russo, Susskind and Thorlacius (Russo et al.[1992]).

2.1 Liouville theory With the above simple current conditions and in con-

formal gauge, our action S is simpli�ed by performing the �eld rede�nition:

� = � � �

4
�+

1

�
e�2� � 1

4

KX
n=2

an�
n


 =

�
1� �

4

�
�+

1

�
e�2� � 1

4

KX
n=2

an�
n :

With these new �elds, the action takes a Liouville form:

S =
1

�

Z
d2x

(
�� @+�@��+ � @+
@�
 + �2e2(��
) +

1

2

NX
i=1

@+fi@�fi

)
:

In terms of the �elds � and 
, we can write the Ricci curvature scalar as:

R = 8e�2�@+@��

= 8e�2�(�;
)
1



0

�
@+@���



00



0
@+
@�


�

where �(�;
) is the conformal factor as an implicit function of the new �elds and

the prime (
0
) denotes a derivative with respect to the �eld �. Hence the curvature

diverges whenever 

0
vanishes. Such extrema of the function 
(�) lead to timelike

singularities, even for the vacuum solution in which the dilaton always increases
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along the spatial direction. However, in the extended model, we can avoid these

singularities by properly constraining the coupling constants. For example, 
(�)

has no extrema if � > 4, an > 0 for odd n, and an = 0 for even n.

2.2 Solution We can further simplify the solutions with another �eld rede�-

nition:

U =

�

2
(�+
)

V = ��
 :

Then the metric equations of motion become:

T�� = �2@�U@�V +
�

2

@2�V + @2�U +
1

2

NX
i=1

(@�fi)
2
+ t�(�

�
) = 0

T+� = ��
2
@+@�V � @+@�U � �2e2V = 0

where the functions t� arise because of zero-mode ambiguities in de�ning the mat-

ter Green's function in the Polyakov action (1.3). We consider the solution for a

collapsing shock wave for which the matter con�guration is:

T
f
++ =

1

2

NX
i=1

(@+fi)
2
= m�(�+ � �+0 ) T

f
�� =

1

2

NX
i=1

(@�fi)
2
= 0

where m is the amplitude of the shock wave. We also choose t�-functions to have

the form (Russo et al. [1992]):

t�(x
�
) = ��

4

1

(x�)2
:

Now before presenting the solution, we transform to asymptotically Minkowskian

coordinates for which at large radius ds2 ' �d�+d��. With these choices, the

solution is:

U = e�(�
+
���) � m

�

�
e�(�

+
��+0 ) � 1

�
�(�+ � �+0 )�

�

4
ln

h
1 +

m

�
e��

�

i
V =

�

2
(�+ � ��) :

(2.1)

This solution is the analogue of the classical shock wave. However, the above

solution now includes the e�ects of Hawking radiation. The black hole evaporation

can be examined by looking at the evolution of the Bondi mass.

3 Bondi mass

The Bondi mass is de�ned on the future null in�nity J +
R and in the asymptoti-

cally Minkowskian coordinates, ��. It is expressed in terms of the linear variations

�Tab of the stress-energy tensor around some reference solution. As a reference,

we take the \vacuum solution" which is given by setting m = 0 in the shock wave

solution (2.1). Thus, the Bondi mass (de Alwis [1992]):

M (��) = �
Z J

+

R

d�+(�T++ + �T+�)
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for the shock wave solution is:

M (��) = m � �

4
�

�
ln

h
1 +

m

�
e��

�

i
+

m

�e���
�

+m

�
:

The 
ux of Hawking radiation may be obtained by di�erentiating this expression

with respect to ��. Note that our results are completely independent of any of the

coupling constants � and an. Hence the radiation in these solutions is essentially the

same as in other two-dimensional models (Callan et al. [1992], Russo et al. [1992]).

The radiation goes to zero in the far past �� !�1, while it approaches a constant

in the far future �� !1. The latter constant 
ux means that the black holes never

stop Hawking radiating even when their mass reaches zero! Thus our generalized

model does not avoid this unphysical behavior found in other models.

Conclusion

We have presented a new generalization for the e�ective quantum action derived

by CGHS for the study of Hawking radiation in two dimensions. We have shown

that our generalization gives the possibility of removing the timelike curvature

singularity arising in other models. Hence we may avoid the related boundary

problems (Das and Mukherji [1994], Russo et al. [1993], Strominger and Thorlacius

[1994]). Also, this model is exactly solvable in the sense that we can �nd the general

solution analytically. By studying the solution for the collapsing shock wave, we

found that black hole evaporation proceeds in essentially the same way as in other

dilaton gravity models. In particular, the Hawking radiation in our generalized

model never stops! Thus we must conclude that the physics of this generalized

theory remains incomplete, and we are still unable to determine the end-state of

the black hole evaporation.
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