2,229 research outputs found

    Comment on "Fisheries Management"

    Get PDF
    The recent article by O’Leary et al. (2011) raises an important question about the relationship between science and those who manage fisheries. They contend that fishery managers do not give due cognisance to scientific advice and consistently set Total Allowable Catches (TACs) above values advised by scientists (which they define as ‘‘political adjustment’’). The authors claim that the consequence of this is that there is a high probability of stock collapse in the next 40 years. They use a simulation model to argue that this probability may exceed 80% at the mean level of political adjustment adopted by managers, depending on the degree of environmental variability and life history strategy of the fish

    Psychological type and attitude towards Celtic Christianity among committed Churchgoers in the United Kingdom: an empirical study

    Get PDF
    This article takes the burgeoning interest in Celtic Christianity as a key example of the way in which churches may be responding to the changing spiritual and religious landscape in the United Kingdom today and examines the power of psychological type theory to account for variation in the attitude of committed churchgoers to this innovation. Data provided by a sample of 248 Anglican clergy and lay church officers (who completed the Francis Psychological Type Scales together with the Attitude toward Celtic Christianity Scale) demonstrated that intuitive types, feeling types, and perceiving types reported a more positive attitude towards Celtic Christianity than sensing types, thinking types, and judging types. These findings are interpreted to analyse the appeal of Celtic Christianity and to suggest why some committed churchgoers may find this innovation less attractive

    Comparison of Stochastic Methods for the Variability Assessment of Technology Parameters

    Get PDF
    This paper provides and compares two alternative solutions for the simulation of cables and interconnects with the inclusion of the effects of parameter uncertainties, namely the Polynomial Chaos (PC) method and the Response Surface Modeling (RSM). The problem formulation applies to the telegraphers equations with stochastic coefficients. According to PC, the solution requires an expansion of the unknown parameters in terms of orthogonal polynomials of random variables. On the contrary, RSM is based on a least-square polynomial fitting of the system response. The proposed methods offer accuracy and improved efficiency in computing the parameter variability effects on system responses with respect to the conventional Monte Carlo approach. These approaches are validated by means of the application to the stochastic analysis of a commercial multiconductor flat cable. This analysis allows us to highlight the respective advantages and disadvantages of the presented method

    Graphene formation on SiC substrates

    Full text link
    Graphene layers were created on both C and Si faces of semi-insulating, on-axis, 4H- and 6H-SiC substrates. The process was performed under high vacuum (<10-4 mbar) in a commercial chemical vapor deposition SiC reactor. A method for H2 etching the on-axis sub-strates was developed to produce surface steps with heights of 0.5 nm on the Si-face and 1.0 to 1.5 nm on the C-face for each polytype. A process was developed to form graphene on the substrates immediately after H2 etching and Raman spectroscopy of these samples confirmed the formation of graphene. The morphology of the graphene is described. For both faces, the underlying substrate morphology was significantly modified during graphene formation; sur-face steps were up to 15 nm high and the uniform step morphology was sometimes lost. Mo-bilities and sheet carrier concentrations derived from Hall Effect measurements on large area (16 mm square) and small area (2 and 10 um square) samples are presented and shown to compare favorably to recent reports.Comment: European Conference on Silicon Carbide and Related Materials 2008 (ECSCRM '08), 4 pages, 4 figure

    Time scales of the Greenland freshwater anomaly in the subpolar North Atlantic

    Get PDF
    Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 34(22), (2021): 8971–8987, https://doi.org/10.1175/JCLI-D-20-0610.1.The impact of increasing Greenland freshwater discharge on the subpolar North Atlantic (SPNA) remains unknown as there are uncertainties associated with the time scales of the Greenland freshwater anomaly (GFWA) in the SPNA. Results from numerical simulations tracking GFWA and an analytical approach are employed to estimate the response time, suggesting that a decadal time scale (13 years) is required for the SPNA to adjust for increasing GFWA. Analytical solutions obtained for a long-lasting increase of freshwater discharge show a non-steady-state response of the SPNA with increasing content of the GFWA. In contrast, solutions for a short-lived pulse of freshwater demonstrate different responses of the SPNA with a rapid increase of freshwater in the domain followed by an exponential decay after the pulse has passed. The derived theoretical relation between time scales shows that residence time scales are time dependent for a non-steady-state case and asymptote the response time scale with time. The residence time of the GFWA deduced from Lagrangian experiments is close to and smaller than the response time, in agreement with the theory. The Lagrangian analysis shows dependence of the residence time on the entrance route of the GFWA and on the depth. The fraction of the GFWA exported through Davis Strait has limited impact on the interior basins, whereas the fraction entering the SPNA from the southwest Greenland shelf spreads into the interior regions. In both cases, the residence time of the GFWA increases with depth demonstrating long persistence of the freshwater anomaly in the subsurface layers.D. S. Dukhovskoy and E. P. Chassignet were funded by the DOE (Award DE-SC0014378) and HYCOM NOPP (Award N00014-19-1-2674). The HYCOM-CICE simulations were supported by a grant of computer time from the DoD High-Performance Computing Modernization Program at NRL SSC. G. Platov was funded by the RSF N19-17-00154. P. G. Myers was funded by an NSERC Discovery Grant (Grant RGPIN 04357). A. Proshutinsky was funded by FAMOS project (NSF Grant NSF 14-584)

    Supertubes

    Get PDF
    It is shown that a IIA superstring carrying D0-brane charge can be `blown-up', in a {\it Minkowski vacuum} background, to a (1/4)-supersymmetric tubular D2-brane, supported against collapse by the angular momentum generated by crossed electric and magnetic Born-Infeld fields. This `supertube' can be viewed as a worldvolume realization of the sigma-model Q-lump.Comment: Revision includes mention of some configurations dual to the supertub

    M2-Branes and Background Fields

    Full text link
    We discuss the coupling of multiple M2-branes to the background 3-form and 6-form gauge fields of eleven-dimensional supergravity, including the coupling of the Fermions. In particular we show in detail how a natural generalization of the Myers flux-terms, along with the resulting curvature of the background metric, leads to mass terms in the effective field theory.Comment: 19 page

    Relativistic Viscous Fluid Dynamics and Non-Equilibrium Entropy

    Full text link
    Fluid dynamics corresponds to the dynamics of a substance in the long wavelength limit. Writing down all terms in a gradient (long wavelength) expansion up to second order for a relativistic system at vanishing charge density, one obtains the most general (causal) equations of motion for a fluid in the presence of shear and bulk viscosity, as well as the structure of the non-equilibrium entropy current. Requiring positivity of the divergence of the non-equilibrium entropy current relates some of its coefficients to those entering the equations of motion. I comment on possible applications of these results for conformal and non-conformal fluids.Comment: 25 pages, no figures; v2: matches published versio
    corecore