127 research outputs found

    Risk factors, management and outcomes of adverse drug reactions in adult patients on antiretrovirals at Kenyatta National Hospital, Nairobi

    Get PDF
    Background: Antiretrovirals have been associated with serious adverse drug reactions. Several factors have been suggested as independent risk factors for their development. Identification of these factors may help in prevention and management of the adverse drug reactions.Objective: To describe the factors associated with adverse drug reactions, their management, and the clinical outcomes.Design: A retrospective cohort study.Setting: Kenyatta National Hospital, Comprehensive Care Centre.Subjects: Adult patients receiving antiretrovirals from 2003 to 2006.Main outcome measures: The primary outcomes were the risk-factors, interventions and outcomes of documented adverse drug reaction after exposure to antiretrovirals.Results: Systematic random sampling was used to pick 350 patients’ files. The risk factors for experiencing at least one adverse drug reaction were: having a baseline CD4 count less than 123 (odds ratio [OR] = 1.82, 95% confidence interval [CI]: 1.18 to 2.79; p=0.006); treatment with antiretrovirals for more than 32 months (OR =1.76, CI: 1.15 to 2.71; p=0.010), using didanosine containing regimens (OR=3.7, CI: 1.40 to 9.70; p=0.008) or being on stavudine containing regimens (OR=4.4, CI: 2.53 to 7.71; p=0.001). The most common intervention was addition of a non-antiretroviral while 41% of events resulted in a change of anti-retroviral therapy. Conclusions: Current standard regimens in resource-limited countries are associated with an increased risk of adverse drug reactions. Almost half of adverse reactions are managed by addition of a non-anti-retroviral drug alone but 41% necessitated a change of anti-retrovirals

    Haematology of Experimental Trypanosoma Brucei Rhodesiense Infection in Vervet Monkeys

    Get PDF
    Haematological aberrations associated with human infective trypanosomes were investigated in the vervet monkey model of the Rhodesian sleeping sickness. Four monkeys were infected intravenously with 104 Trypanosoma brucei rhodesiense and monitored for changes in the blood profile using a haematological analyser. A chronic infection lasting between 48 and 112 days was observed. Microcytic hypochromic anaemia, which was characterized by a decline in packed cell volume (PCV), red blood cell (RBC) numbers, mean corpuscular volume (MCV) and mean corpuscular haemoglobin concentration (MCH) developed at an early stage, and persisted throughout the infection. The mean platelet counts declined significantly from 3 x 105/\u3bcl (day 0 post infection) to 6.8 x 104/\u3bcl (day 7 post infection) and remained low in all the animals. However, the mean platelets volume rose during the course of the infection. An initial decline in total white blood cell (WBC) counts occurred between day 0 and 7 (3.1 x 106/\u3bcl) and remained low up to day 35 post infection (3.5 x 106/\u3bcl). This was followed by an increase in WBC counts, principally associated with increased lymphocyte numbers. It is concluded that microcytic hypochromic anaemia, thrombocytopaenia and an initial leucocytopaenia are the most important haematological changes associated with a chronic infection of T.b. rhodesiense infection in vervet monkeys

    Impact of COVID-19 on mortality in coastal Kenya: a longitudinal open cohort study

    Get PDF
    The mortality impact of COVID-19 in Africa remains controversial because most countries lack vital registration. We analysed excess mortality in Kilifi Health and Demographic Surveillance System, Kenya, using 9 years of baseline data. SARS-CoV-2 seroprevalence studies suggest most adults here were infected before May 2022. During 5 waves of COVID-19 (April 2020-May 2022) an overall excess mortality of 4.8% (95% PI 1.2%, 9.4%) concealed a significant excess (11.6%, 95% PI 5.9%, 18.9%) among older adults ( ≥ 65 years) and a deficit among children aged 1–14 years (−7.7%, 95% PI −20.9%, 6.9%). The excess mortality rate for January 2020-December 2021, age-standardised to the Kenyan population, was 27.4/100,000 person-years (95% CI 23.2-31.6). In Coastal Kenya, excess mortality during the pandemic was substantially lower than in most high-income countries but the significant excess mortality in older adults emphasizes the value of achieving high vaccine coverage in this risk group

    Genomic signatures of population decline in the malaria mosquito Anopheles gambiae

    Get PDF
    Population genomic features such as nucleotide diversity and linkage disequilibrium are expected to be strongly shaped by changes in population size, and might therefore be useful for monitoring the success of a control campaign. In the Kilifi district of Kenya, there has been a marked decline in the abundance of the malaria vector Anopheles gambiae subsequent to the rollout of insecticide-treated bed nets. To investigate whether this decline left a detectable population genomic signature, simulations were performed to compare the effect of population crashes on nucleotide diversity, Tajima's D, and linkage disequilibrium (as measured by the population recombination parameter ρ). Linkage disequilibrium and ρ were estimated for An. gambiae from Kilifi, and compared them to values for Anopheles arabiensis and Anopheles merus at the same location, and for An. gambiae in a location 200 km from Kilifi. In the first simulations ρ changed more rapidly after a population crash than the other statistics, and therefore is a more sensitive indicator of recent population decline. In the empirical data, linkage disequilibrium extends 100-1000 times further, and ρ is 100-1000 times smaller, for the Kilifi population of An. gambiae than for any of the other populations. There were also significant runs of homozygosity in many of the individual An. gambiae mosquitoes from Kilifi. These results support the hypothesis that the recent decline in An. gambiae was driven by the rollout of bed nets. Measuring population genomic parameters in a small sample of individuals before, during and after vector or pest control may be a valuable method of tracking the effectiveness of interventions

    Variation in the effectiveness of insecticide treated nets against malaria and outdoor biting by vectors in Kilifi, Kenya

    Get PDF
    Background: Insecticide treated nets (ITNs) protect humans against bites from the Anopheles mosquito vectors that transmit malaria, thereby reducing malaria morbidity and mortality. It has been noted that ITN use leads to a switch from indoor to outdoor feeding among these vectors. It might be expected that outdoor feeding would undermine the effectiveness of ITNs that target indoors vectors, but data are limited. Methods: We linked homestead level geospatial data to clinical surveillance data at a primary healthcare facility in Kilifi County in order to map geographical heterogeneity in ITN effectiveness and observed vector feeding behaviour using landing catches and CDC light traps in six selected areas of varying ITN effectiveness. We quantified the interaction between mosquitoes and humans to evaluate whether outdoor vector biting is a potential explanation for the variation in ITN effectiveness. Results: We observed 37% and 46% visits associated with positive malaria slides among ITN users and non-ITN-users, respectively; ITN use was associated with 32% protection from malaria (crude OR = 0.68, 95% CI: 0.64, 0.73). We obtained modification of ITN effectiveness by geographical area (p=0.016), and identified 6 hotspots using the spatial scan statistic. Majority of mosquitoes were caught outdoor (60%) and were of the An. funestus group (75%). The overall propensity to feed at times when most people were asleep was high; the vast majority of the Anopheles mosquitoes were caught at times when most people are indoors asleep. Estimates for the proportion of human-mosquito contact between the first and last hour when most humans were asleep was consistently high across all locations, ranging from 0.83 to 1.00. Conclusion: Our data do not provide evidence of an epidemiological association between microgeographical variations in ITN effectiveness and variations in the microgeographical distribution of outdoor biting.</ns4:p

    Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Anopheles gambiae </it>and <it>Anopheles funestus </it>mosquito species complexes are the primary vectors of <it>Plasmodium falciparum </it>malaria in sub-Saharan Africa. To better understand the environmental factors influencing these species, the abundance, distribution and transmission data from a south-eastern Kenyan study were retrospectively analysed, and the climate, vegetation and elevation data in key locations compared.</p> <p>Methods</p> <p>Thirty villages in Malindi, Kilifi and Kwale Districts with data on <it>An. gambiae sensu strict</it>, <it>Anopheles arabiensis</it> and <it>An. funestus</it> entomological inoculation rates (EIRs), were used as focal points for spatial and environmental analyses. Transmission patterns were examined for spatial autocorrelation using the Moran's <it>I </it>statistic, and for the clustering of high or low EIR values using the Getis-Ord Gi* statistic. Environmental data were derived from remote-sensed satellite sources of precipitation, temperature, specific humidity, Normalized Difference Vegetation Index (NDVI), and elevation. The relationship between transmission and environmental measures was examined using bivariate correlations, and by comparing environmental means between locations of high and low clustering using the Mann-Whitney <it>U </it>test.</p> <p>Results</p> <p>Spatial analyses indicated positive autocorrelation of <it>An. arabiensis </it>and <it>An. funestus </it>transmission, but not of <it>An. gambiae s.s</it>., which was found to be widespread across the study region. The spatial clustering of high EIR values for <it>An. arabiensis </it>was confined to the lowland areas of Malindi, and for <it>An. funestus </it>to the southern districts of Kilifi and Kwale. Overall, <it>An. gambiae s.s</it>. and <it>An. arabiensis </it>had similar spatial and environmental trends, with higher transmission associated with higher precipitation, but lower temperature, humidity and NDVI measures than those locations with lower transmission by these species and/or in locations where transmission by <it>An. funestus </it>was high. Statistical comparisons indicated that precipitation and temperatures were significantly different between the <it>An. arabiensis </it>and <it>An. funestus </it>high and low transmission locations.</p> <p>Conclusion</p> <p>These finding suggest that the abundance, distribution and malaria transmission of different malaria vectors are driven by different environmental factors. A better understanding of the specific ecological parameters of each malaria mosquito species will help define their current distributions, and how they may currently and prospectively be affected by climate change, interventions and other factors.</p

    <i>Trypanosoma brucei rhodesiense</i> transmitted by a single tsetse fly bite in vervet monkeys as a model of human African trypanosomiasis

    Get PDF
    Sleeping sickness is caused by a species of trypanosome blood parasite that is transmitted by tsetse flies. To understand better how infection with this parasite leads to disease, we provide here the most detailed description yet of the course of infection and disease onset in vervet monkeys. One infected tsetse fly was allowed to feed on each host individual, and in all cases infections were successful. The characteristics of infection and disease were similar in all hosts, but the rate of progression varied considerably. Parasites were first detected in the blood 4-10 days after infection, showing that migration of parasites from the site of fly bite was very rapid. Anaemia was a key feature of disease, with a reduction in the numbers and average size of red blood cells and associated decline in numbers of platelets and white blood cells. One to six weeks after infection, parasites were observed in the cerebrospinal fluid (CSF), indicating that they had moved from the blood into the brain; this was associated with a white cell infiltration. This study shows that fly-transmitted infection in vervets accurately mimics human disease and provides a robust model to understand better how sleeping sickness develops

    Detection of Anopheles stephensi mosquitoes by molecular surveillance, Kenya

    Get PDF
    The Anopheles stephensi mosquito is an invasive malaria vector recently reported in Djibouti, Ethiopia, Sudan, Somalia, Nigeria, and Ghana. The World Health Organization has called on countries in Africa to increase surveillance efforts to detect and report this vector and institute appropriate and effective control mechanisms. In Kenya, the Division of National Malaria Program conducted entomological surveillance in counties at risk for An. stephensi mosquito invasion. In addition, the Kenya Medical Research Institute conducted molecular surveillance of all sampled Anopheles mosquitoes from other studies to identify An. stephensi mosquitoes. We report the detection and confirmation of An. stephensi mosquitoes in Marsabit and Turkana Counties by using endpoint PCR and morphological and sequence identification. We demonstrate the urgent need for intensified entomological surveillance in all areas at risk for An. stephensi mosquito invasion, to clarify its occurrence and distribution and develop tailored approaches to prevent further spread

    Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands

    Get PDF
    Abstract Background The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations. Methods Predators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts. Results Experiments found that habitat type (P &lt; 0.0001) and predator species (P &lt; 0.0001) had a significant impact on the predation rate in the 24 hour evaluations. In semi-field experiments, predator species (P &lt; 0.0001) and habitat type (P &lt; 0.0001) were significant factors in both the daily survival and the overall developmental time of larvae. Pupation rates took significantly longer in habitats with refugia. An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles. Conclusion These experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators
    corecore