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Impact of COVID-19 on mortality in coastal
Kenya: a longitudinal open cohort study

M. Otiende 1 , A. Nyaguara1, C. Bottomley 2, D. Walumbe1, G. Mochamah1,
D. Amadi1, C. Nyundo1, E. W. Kagucia 1, A. O. Etyang1, I. M. O. Adetifa 1,2,
S. P. C. Brand 3, E. Maitha4, E. Chondo4, E. Nzomo5, R. Aman6, M. Mwangangi6,
P. Amoth6, K. Kasera6, W. Ng’ang’a7, E. Barasa1, B. Tsofa1, J. Mwangangi1,
P. Bejon1,8, A. Agweyu1, T. N. Williams 1,9 & J. A. G. Scott1,2

The mortality impact of COVID-19 in Africa remains controversial because
most countries lack vital registration. We analysed excess mortality in Kilifi
Health andDemographic Surveillance System, Kenya, using 9 years of baseline
data. SARS-CoV-2 seroprevalence studies suggest most adults here were
infected before May 2022. During 5 waves of COVID-19 (April 2020-May 2022)
an overall excess mortality of 4.8% (95% PI 1.2%, 9.4%) concealed a significant
excess (11.6%, 95% PI 5.9%, 18.9%) among older adults ( ≥ 65 years) and a deficit
among children aged 1–14 years (−7.7%, 95% PI −20.9%, 6.9%). The excess
mortality rate for January 2020-December 2021, age-standardised to the
Kenyan population, was 27.4/100,000 person-years (95% CI 23.2-31.6). In
Coastal Kenya, excess mortality during the pandemic was substantially lower
than in most high-income countries but the significant excess mortality in
older adults emphasizes the value of achieving high vaccine coverage in this
risk group.

Estimates of global excess mortality during the COVID-19 pandemic in
2020–2021 vary widely from 14.8 million to 19.8 million1–4. An impor-
tant factor driving this variation is uncertainty regarding the impact
of COVID-19 in Africa5. Across sub-Saharan Africa, most countries
lack vital registration systems and only South Africa contributed
national mortality data to these models; the estimates of deaths in
all other countries were extrapolated from mortality patterns
observed elsewhere. In Kenya, national vital registration now records
more than half of all deaths but the increasing coverage of deaths in
recent years makes it unsuitable to estimate temporal trends in
mortality patterns6. This lack of data has led to controversy in the
interpretation of the pandemic’s impact in Africa and this has sig-
nificant consequences for policy. For example, predictions of a lower

mortality impact in Africa, based on its youthful population structure,
stimulated arguments to sustain health spending on existing
threats suchasmalaria, HIV, and respiratory tract infections in children
rather than redirect funding to COVID-19 response measures7.
Health and demographic surveillance systems (HDSS), which conduct
longitudinal population-based mortality surveillance, provide an
alternative source of mortality data. They cover only a fraction of
the national population and cannot be considered representative of
the whole country, but they provide a robust empiric insight into the
longitudinal mortality experience of selected African populations
throughout the pandemic.

In Africa, ascertainment of COVID-19-specific deaths was con-
strained by limited access to COVID-19 testing. In such settings, excess
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mortality is amore useful measure of COVID-19 impact. It sums deaths
attributable to COVID-19 and to pandemic restrictions, such as
reduced access to health care, and it subtracts mortality gains attri-
butable to pandemic restrictions, such as the suppression of influenza
transmission8–11. It is calculated as a ratio: the total number of deaths
observed in a population dividedby the number of deaths expectedon
the basis of the population mortality experienced in previous years. It
can also be presented as a rate: the number of deaths in excess of
expectation since the start of the pandemic divided by total person-
years of observation.

In the analysis presented here, we estimate both measures of
excessmortality in anHDSS population of 306,000 individuals in Kilifi
HDSS, Kenya, which has been under continuous surveillance for over
20 years. The same HDSS was also used as a sampling frame for
population-based studies of anti-SARS-CoV-2 IgG antibodies. Ser-
oprevalence among adults was 25% in December 2020 to April 202112

and 75% from February to May 202213; seroprevalence was lower in
children, at 15% and 64%, respectively. Given that only 17% of the adult
population had been vaccinated by the time of the second survey, the
seroprevalence suggests widespread dissemination of SARS-CoV-2 in
Kilifi, typical of elsewhere in Africa14. Because excess mortality is
dependent on the population age-structure15 we have reported age-
stratified data. We have estimated monthly excess mortality from 1st
April 2020 to 5thMay 2022,which includes thefirstfivewaves of SARS-
CoV-2 in Kenya.

Results
We analysed 16,177 deaths occurring between 1st Jan 2010 and 5thMay
2022 from among 3,330,071 PYO. This covered the first 5 waves of
COVID-19 in Kenya (Fig. 1). Observed and expected monthly mortality
rates are shown in Fig. S1. We found no evidence of autocorrelation
(Fig. S2) or lack of fit (Fig. S3) and adjustment for air temperature did
not significantly improve our model (Supplement, Fig. S4 and
Table S4). We excluded infants from all analyses given the constraints
in detecting births accurately during the lockdown period. On aggre-
gating all ages except infants, there was significant excess mortality in
November–December 2020, July–August 2021 and December

2021–January 2022 (Fig. 2). These periods coincide with the peak of
wave 2 (wild-type), the rise of wave 4 (Delta) and the rise and peak of
wave 5 (Omicron BA1), respectively.

We defined the start of a wave as the point at which the daily
effective reproduction number of SARS-CoV-216,17 traversed 1 in a
positive direction after at least 4weeks below 1 and the endof thewave
to be the point where the subsequent wave begins. For wave-specific
excess mortality, we offset analysis periods associated with each
infection wave by a lag of 2 weeks. There was significant excess mor-
tality for all ages together, excluding infants, during wave 4 (Delta) but
not in any other wave (Table 1). We predicted 610 deaths during the
Delta wave but observed 711 (excess mortality 16.6%, 95% PI 9.5%,
24.7%). In age-specific analyses, there was significant excess mortality
among those aged 5–14 years and 15–44 years in wave 1 (wild-type),
among those aged 45–64 years in wave 4 (Delta) and among those
aged ≥65 years in waves 4 (Delta) and 5 (Omicron). Mortality was sig-
nificantly lower than predicted in wave 1 (wild-type) among those aged
45–64 and ≥65 years and in wave 4 (Delta) among those aged 5–14
years. In the three months before the start of the pandemic (1st
January–31st March 2020), we observed an overall excess mortality of
14.3% (95% PI 5.1%, 24.9%) which followed a year, 2019, with a sig-
nificant mortality deficit (Table S3a). In age-specific analyses, this
excess mortality in January–March 2020 was significant only among
those aged ≥65 years (17.5%, 95% PI 2.9%, 43.9%).

On aggregate, across the firstfivewaves of the pandemic, 1st April
2020–16thApril 2022 (Table 2),wepredicted 2336deaths in adults and
children aged ≥1 year based on 9 years of baseline data (2010–2018),
but we observed 2447 deaths, giving an excess mortality of 4.8% (95%
PI 1.2%, 9.4%) and an excess mortality rate of 20.3/100,000 person-
years. Excess mortality only deviated significantly above zero among
adults aged ≥65 years (11.6% 95% PI 5.9%, 18.9%). Summary excess
mortality in all children aged 1–14 years was –7.7% (95% PI –20.9%,
6.9%), but thismortality deficit wasmostlydriven by improved survival
in children aged 5–14 years (Table 2). In sex-specific analyses of the
5-wave period, overall excess mortality was higher in females (9.6%,
Table S1a) compared tomales (–0.1%, Table S1b). Among females aged
45–64 and ≥65 years, there was a significant excess mortality of 11.4%
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Fig. 1 | Timeline of the first six COVID-19 waves in Kenya, the Kilifi HDSS re-
enumeration rounds and excess mortality analysis windows. The dotted black
horizontal line shows the period when HDSS fieldwork was suspended during
round 48. The orange data series is the daily number of new cases of test-positive
COVID-19 cases reported in Kenya (scale on left-hand y-axis) [Data source: https://
coronavirus.jhu.edu/map.html]. The predominant variant behind each wave is

denoted at the base of each wave. The green line represents the effective repro-
ductive number (scale on the right-hand y-axis) from a secondary source16,17. The
dates of the two anti-SARS-CoV-2 antibody serosurveys in Kilifi HDSS are shown as
grey bars12,13. The exact dates of the re-enumeration rounds, defined waves and
analysis windows are listed in Table S8.
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(95% PI 1.3%, 26.8%) and 16.3% (95% PI 76.4, 27.0), respectively; the
equivalent figures formaleswas–7.6% (95%PI –18.3, 3.5) and 6.3% (95%
PI –1.2, 17.3).

We explored the internal validity of the mortality predictions of
our baseline model by removing each year (2010–2019) in turn from
the analysis and estimating the excess mortality prediction for that
year. Predicted mortality differed significantly from observed mortal-
ity in 2019 (mortality deficit–7.5%, 95%PI–13.1%,–1.2%, Table S3a). This
single deviation is likely to be attributable to random fluctuation in the
timingof deaths; itwas followedby abrief periodof excessmortality in
January–March 2020. However, to avoid biasing our baseline model,
we excluded data from 2019 when predicting mortality in 2020–2022.
Repeating the internal validation analysis for the new baseline
(2010–2018) revealed no significant differences betweenobserved and
expected deaths (Table S3b).

For comparison with published modelled estimates of global and
national excess mortality1–3 for the two calendar years 2020–2021, we
also calculated overall excessmortality rates in KilifiHDSS for the same
period. Observed and expected deaths for all residents aged ≥1 year
were 2441 and 2276, respectively, giving an excess mortality of 7.2%

(95% PI 3.4%, 11.3%) and an excess mortality rate of 31.0/100,000
person-years (Table 2). After standardising the Kilifi HDSS results to
the age structure of the Kenyan national population, the excess mor-
tality rate was 27.4/100,000 (95%CI, 23.2–31.6) in 2020–2021.

We conducted data quality checks to examine whether bias was
introduced as a possible consequence of three factors; (1) field inter-
viewers were unable to reach all household respondents during the
pandemic; (2) person-years of observation in the HDSS reduced
because delayed fieldwork resulted in a delay in registering new in-
migrants; (3) travel restrictions reduced the frequency of migrant
labourers returning home to Kilifi for care when they contract a
terminal illness18,19. If travel restrictions substantially reduced the
return of sick diaspora, then the absence of unhealthy in-migrant
deaths during the pandemicmay have attenuated the excessmortality
attributable to COVID-19 among stable residents of Kilifi HDSS. In our
analyses: (1) we found no evidence that interviewers were unable to
reach household respondents (Table S5); (2) the person-years of
observation did decline during the pandemic (Fig. S5), particularly
among younger age groups who are, in general, more mobile; how-
ever, whilst the risk time for in-migrants was reduced any deaths
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Fig. 2 | Monthly excess mortality rates from 1st April 2020 to 30th April 2022.
Calculated as (observed deaths—expected deaths)/person-years of observation.
The excess mortality rate for all ages above infancy (age ≥1 year) is the weighted

average of the age-specific rates. The weights are the proportion of each age group
in theKilifiHDSSpopulation. The grey bands represent the 95%prediction intervals
computed as the range from the 5th and 95th percentiles of 100model simulations.
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occurring in this unrecorded risk time were also unobserved by the
HDSS; (3) we explored bias due to differential mortality by migration
status by conducting survival analyses on a fixed cohort of residents
selected on 23rd March 2020 and followed for the duration of travel
restrictions (7 months) and compared the survival of this cohort to
similar cohorts selected on 23rdMarch of previous years from 2010 to
2019; there was no evidence of decreased survival in 2020 (Table S6
and Fig. S6).

To explain the slight asynchrony between waves of excess mor-
tality in KilifiHDSS and the national case surveillancedata,we analysed

the subset of case data derived from Kilifi County. The surveillance
data comprised PCR and rapid antigen tests for SARS-CoV-2, including
negative results, collated across multiple Kenyan testing laboratories
and national reporting mechanisms20. From 23rd March 2020 to 5th
May 2022 Kilifi accounted for 79,310 (3.2%) of 2,501,682 PCR tests and
6,339 (1.1%) of 581,648 rapid antigen tests nationwide. Superimposing
the national and Kilifi-specific epidemic curves (Fig. S7) illustrates that,
in Kilifi, wave 1 (wild-type) was absent, wave 3 (Beta-Alpha) arrived late
and wave 4 (Delta) arrived early and was more pronounced.

We analysed the cause of death data from 2010 to 2022 to
examine whether there were changes in the causes of death in
2020–2022 that could be attributed to the pandemic. Between
2015–2019, we investigated 71.7% (4647/6480) of deaths detected in
Kilifi HDSS using verbal autopsy (Fig. S8). In 2020, 2021 and 2022 the
proportions we investigated were 70.4% (914/1298), 63.5% (915/1,440)
and 47.2% (180/381), respectively. The proportion of deaths attribu-
table to ARI was lower in 2020 in all age groups but returned to pre-
COVID-19 levels in 2021 (Fig. 3). The proportion attributable to road
traffic accidents (RTA) rose throughout the pandemic, particularly in
those aged 15–44 years. The proportion attributable to stroke rose
during the pandemic, particularly in those aged 45–64 years.

In 2020, theWorldHealthOrganizationproposed6newCOVID-19
questions for verbal autopsies21. Of 103 verbal autopsies where at least
one COVID-19 question was positive, 31 were attributed to COVID-19
using the COVID-19 Rapid Mortality Surveillance (CRMS) software22.
This represents 1.8% of 1724 deaths investigated between April 1, 2020,
and April 16, 2022. Among the same 103 positive verbal autopsies
reviewed by two physicians, 20 were considered probably related to
COVID-19; 9 were possibly related; and 74 were unrelated (Fig. S10).

Discussion
The results of this longstanding mortality surveillance of a population
of 306,000 in coastal Kenya indicate a mortality excess of 4.8%
throughout the firstfivewaves of the pandemic in Kilifi. This aggregate
figure conceals a higher excess mortality of 11.6% among those aged
≥65 years which is offset by a 7.7% reduction in mortality among chil-
dren aged 1–14 years. Population excess mortality was only sig-
nificantly positive during one of the five waves of SARS-CoV-2, the
Delta wave; this is consistent with observations elsewhere that disease
severity was greatest for the Delta variant23. The rise in seroprevalence
of SARS-CoV-2 antibodies in Kilifi was much greater in 2021 than in

Table 1 | Excess deaths from 1st January 2020 to 16th April
2022 amongKilifiHDSS residents aged ≥1 year, pre-pandemic
and in each of 5 COVID-19 waves

Age Deaths Excess mortality

Group Observed Expected N % 95% PI Rate/100,000

1st January 2020–31st March 2020 (pre-pandemic period)

1–4 years 15 14 1 7.1 –33.4, 114.3 12.4

5–14 years 22 18 4 22.2 –18.6, 92.1 19.0

15–44 years 63 55 8 14.5 –6.7, 41.7 30.4

45–64 years 71 66 5 7.6 –14.0, 39.4 66.7

≥65 years 141 120 21 17.5 2.9, 43.9 692.7

All agesa 312 273 39 14.3 5.1, 24.9 59.1

1st April 2020–4th October 2020 (Wave 1—wild type)

1–4 years 31 29 2 6.9 –18.5, 53.5 12.4

5–14 years 46 35 11 31.4 3.3, 93.2 25.8

15–44 years 124 107 17 15.9 0.3, 38.6 31.6

45–64 years 111 132 –21 –15.9 –26.3, –0.1 –135.7

≥65 years 257 294 –37 –12.6 –20.9, –1.9 –584.1

All agesa 569 597 –28 –4.7 –11.0, 4.5 –20.9

5th October 2020–14th February 2021 (Wave 2—wild type)

1–4 years 17 17 0 0.0 –36.7, 78.3 0.0

5–14 years 20 27 –7 –25.9 –46.6, 20.1 –23.4

15–44 years 79 77 2 2.6 –16.6, 27.4 5.2

45–64 years 88 88 0 0.0 –16.4, 25.1 0.0

≥65 years 200 185 15 8.1 –5.7, 23.4 326.8

All agesa 404 394 10 2.5 –7.8, 11.6 10.5

15th February 2021–4th June 2021 (Wave 3—Beta-Alpha)

1–4 years 20 16 4 25 –16.8, 124.9 43.1

5–14 years 21 20 1 5 –32.0, 62.1 4.0

15–44 years 61 66 –5 –7.6 –25.0, 18.7 –15.2

45–64 years 75 81 –6 –7.4 –22.9, 15.1 –64.6

≥65 years 179 159 20 12.6 –3.0, 38.8 529.8

All agesa 356 342 14 4.1 –7.0, 14.1 17.4

5th June 2021–11th December 2021 (Wave 4—Delta)

1–4 years 20 26 –6 –23.1 –50.7, 28.1 –36.7

5–14 years 19 38 –19 –50.0 –65.3, –30.6 –43.6

15–44 years 102 110 –8 –7.3 –23.7, 18.6 –13.9

45–64 years 156 128 28 21.9 4.4, 43.5 169.4

≥65 years 414 308 106 34.4 19.3, 51.3 1545.6

All agesa 711 610 101 16.6 9.5, 24.7 71.6

12th December 2021–16th April 2022 (Wave 5—Omicron BA1)

1–4 years 19 18 1 5.6 –27.7, 92.4 9.0

5–14 years 15 25 –10 –40.0 –59.3, -8.5 –33.7

15–44 years 71 77 –6 –7.8 –22.5, 17.0 –15.2

45–64 years 95 92 3 3.3 –11.7, 32.5 26.7

≥65 years 207 179 28 15.6 1.5, 38.4 610.2
aAll ages excluding infants <1 year old.

Table 2 | Excess deaths from 1st January 2020 to 16th April
2022 and for two calendar years (2020–2021) among Kilifi
HDSS residents aged >1 year

Age Deaths Excess mortality

Group Observed Expected N % 95% PI Rate/100,000

1st April 2020–16th April 2022 (Waves 1–5)

1–4 years 107 106 1 0.9 −15.1, 27.5 1.6

5–14 years 121 146 −25 −17.1 −31.3, -2.4 −14.6

15–44 years 437 437 0 0.0 −8.2, 11.0 0.0

45–64 years 525 521 4 0.8 −5.9, 10.3 6.3

≥65 years 1257 1126 131 11.6 5.9, 18.9 501.1

All agesa 2447 2336 111 4.8 1.2, 9.4 20.3

1st January 2020–31st December 2021

1–4 years 107 105 2 1.9 –16.1, 33.9 3.2

5–14 years 130 142 –12 –8.5 –25.3, 10.7 –7.2

15–44 years 442 427 15 3.5 –4.9, 15.9 7.0

45–64 years 519 508 11 2.2 –4.7, 9.4 17.8

≥65 years 1243 1094 149 13.6 6.6, 21.2 588.9

All agesa 2441 2276 165 7.2 3.4, 11.3 31.0
aAll ages excluding infants <1 year old.
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2020, which may also explain the delayed impact on population
mortality.

The strength of our findings is that they are direct empiric
observations. Individuals in a large open cohort, who have been

followed consistently for 20 years, were enumerated before the pan-
demic and re-enumerated repeatedly throughout the pandemic. Sur-
vival was verified by direct contact with the individual or by the report
of a household member or close neighbour. Modelling was used only
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to generate a statistical fit to mortality data in the 10-year baseline
period to provide a valid prediction of expected mortality during the
pandemic period. The model provided a good fit for the baseline data
across 9 years and, where it did not, in 2019, we excluded these data to
avoid bias. The mortality deficit in 2019 was offset to a substantial
degree by a significant mortality excess in the first three months of
2020.Neither of thesephenomena couldbe related to thepandemicas
the first case of SARS-CoV-2 infection was detected in Kilifi HDSS on
22nd March 2020. However, in order to compare our empiric results
with the predictions of globalmortalitymodelswewere constrained to
begin mortality predictions in January 2020. The stable baseline from
2010 to 2018 provides a robust reference to estimate excessmortality.

The HDSS is, nonetheless, susceptible to observation biases,
particularly in March–October 2020 when fieldwork was suspended
for 7months.Wemaynot have been able to ascertain all deaths among
infants who were born during this suspension or among older persons
who would normally have been expected to migrate into the area. We
managed bias attributable to the under-ascertainment of infant deaths
by excluding infants from our analyses. We were able to capture fewer
PYO during the pandemic, largely because of delays in registering in-
migrants into the HDSS, but this wasmatched by a corresponding loss
in the observation of deaths among this unobserved population and
this is unlikely to have generated any bias. We explored the possibility
that potential in-migrants, grounded elsewhere during the pandemic
but intending to return home because of sickness, might have a higher
mortality. We examined the potential of in-migrant deaths, absent
during lockdown, to obscure a COVID-19 attributable mortality excess
among adults, by comparing the mortality experience of the resident
cohorts throughout the suspension of fieldwork (23rd March–25th
October) in 2020 against the mortality experience of similar cohorts
followed through these same dates in the previous 10 years; there was
no evidence of attenuation of survival during 2020 in these analyses.

Inferences may be limited by the instability in annual mortality
rates in a surveillance population of 306,000. We mitigated temporal
variation in the baseline and pandemic periods by fitting our predic-
tion model over 9 years of data (2010–2018) and analysing excess
mortality over two years of observation. However, this instability
persists in shorter time periods and in subgroup analyses, such as sex-
specific analyses. Thismayexplain the excessmortality observed in the
three months before the pandemic began, as well as the apparently
higher excess mortality in females compared to males. Female excess
mortality has been observed to be higher than male excess mortality
during the pandemic in some countries24 but, in Kilifi HDSS, sex-
specific estimates of excess mortality were indistinguishable statisti-
cally because the 95% prediction intervals were overlapping
(Table S1a, S1b).

The inaccessibility of COVID-19 testing in Africa and potential
biases in the access to testing have led to controversy regarding the
severity of COVID-19 in African populations25. Our analysis of excess
mortality cannot reliably estimate the infection fatality ratio for SARS-
CoV-2 because it cannot distinguish the effects of the pandemic from
those of the pandemic response. For example, the negative excess
mortality in residents aged 1–14 years in Kilifi suggests there were net
mortality benefits attributable to these restrictions; excess mortality
could, therefore, substantially underestimate COVID-19-specific mor-
tality in older adults, assuming deaths in young and old are similar and
similarly ameliorated by pandemic restrictions. However, models
based on seroprevalence data do suggest that the infection fatality
ratio in Africa is lower than in Europe and Americas26,27.

In trying to discriminate these effects we found the VA data had
limited value. There was a clear fall in the proportion of deaths due to
ARI at all ages in 2020. Restrictions onmovement during the pandemic
can slow the transmission of existing respiratory pathogens28. ARI
deaths then reverted to baseline levels in most age groups in 2021,
whilst the pandemic waves continued, suggesting the pattern was due

to pandemic restrictions in 2020 and adherence fatigue in 2021.
Movement restrictions would also be expected to reduce the pro-
portion of deaths attributable to road traffic accidents but in Kilifi
these increased, particularly among the age at highest risk (15–44
years); this paradoxical finding has also been observed in the USA29.

Among 1724 deaths examined between 1st April 2020 and 16th
April 2022, the new WHO VA questions attributed only 31 (1.8%) to
COVID-19 suggesting that the COVID-19 questions and algorithms
lacked sensitivity in our setting. Deaths from COVID-19 may be mis-
taken for pneumonia deaths or they may be mediated through
thrombotic pathology causing stroke or myocardial infarction30 and
these pathways will not be captured by the COVID-19 VA questions.
There is some evidence of an excess in the proportion of stroke deaths
during 2021 among middle-aged adults (45–64 y, Fig. 3).

The strongest peak in excess mortality, present at both 45–64
years and ≥65 years, occurred in July 2021. This preceded the peak of
the Delta wave in the national surveillance dataset by a few weeks.
National serosurveillance and modelling studies have illustrated
marked regional heterogeneity in SARS-CoV-2 transmission
patterns20,31 so we examined local COVID-19 testing data from Kilifi
County. Although the data are relatively sparse and susceptible to local
ascertainment biases, they suggest that wave 4 (Delta) arose earlier in
Kilifi by approximately one month (Fig. S7). The local data also help
explain the lack of excess mortality during the first wave (wild-type) as
there were few infections detected in Kilifi during this wave.

The large negative estimate of excess mortality (–7.7%) among all
children aged 1–14 years is a surprising observation which is probably
attributable to social restrictions and school closures, limiting the
spread of respiratory and gastrointestinal pathogens. Among young
children, aged 1–4 years, there is a single peak of excess mortality
coincident with the national Beta-Alpha peak but, for the rest of the
pandemic, mortality in this age group was lower than predicted. A
study from The Gambia, at three HDSSs in Eastern and Western
Gambia, identified excess mortality in infants in only one32.

Whilst excess mortality cannot define the IFR for SARS-CoV-2, it
can estimate the net mortality cost to society arising from the total
experience of the pandemic. This is important for allocating resources
between ongoing COVID-19 control measures and pre-existing health
priorities. For Kenya, different global models have yielded widely
varying results with profoundly different implications. The Global
Burden of Disease models estimated the excess mortality rate in
2020–2021 at 181.2/100,000 whilst the World Health Organization
model estimated it at 11/100,000. For comparison, these samemodels
estimated excess mortality rates for the USA at 179.3 and 140/10,000
respectively, and for the UK at 126.8 and 109/100,000, respectively1–3.
Our estimateof the excessmortality rate in2020–2021 is 27.4/100,000
after age-standardising Kilifi results to the Kenya population structure.
Of note, our estimate excludes the mortality experience of infants
though, as noted above, there is little support for an excess of mor-
tality among African children32,33. COVID-19 may also be less severe in
rural than in urban settings34 and Kilifi HDSS has more rural residents
(~88%) than the national average (69%)35 sowemaybeunderestimating
the national impact slightly. Nonetheless, these empiric data may be
generalised to the 69% of the national population that live rural lives
and they imply a pandemic mortality impact substantially lower than
that observed in the UK or the USA.

Although the measured excess mortality rate associated with the
pandemic in coastal Kenya is substantially lower than was predicted in
some globalmodels3,4, it has important implications. Given that 25% of
the adults in Kilifi HDSS had no measurable anti-SARS-CoV-2 anti-
bodies when last sampled, a large proportion of the study population
remains susceptible to severe or fatal COVID-19 disease. The significant
mortality risk identified here, among adults aged ≥65 years in Kilifi,
supports a specific focus on the delivery of COVID-19 vaccines to older
persons in Kenya.
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Methods
The first case of COVID-19 in Kenya was identified on 12th March 2020
and 323,818 cases and 5649 deaths were reported up 5th May 202216.
To date there have been seven waves of COVID-19 in Kenya; the first
two waves were driven by the wild-type variant, the third by the Beta/
Alpha variants, the fourth by Delta and the remaining three by Omi-
cron (Fig. 1).

Kilifi HDSS was established in 200036 with an initial census of
180,000 residents. Vital status and migration events have been recor-
ded in subsequent re-enumeration rounds conducted every 4 months.
By 2020, the population size was 306,000 and approximately 1300
deaths were recorded in each of the three years 2017–1937. In Kilifi, the
first case of COVID-19 was detected on 22nd March 2020. Because of a
nationwide lockdown, HDSS field operations were suspended for
7 months between 23rd March 2020 and 25th October 2020.

The causeof deathwithin KilifiHDSShasbeen evaluatedbyVerbal
Autopsy (VA) since 200838. Trained field interviewers have questioned
close relatives about signs and symptoms of the deceased household
member from 30 days after the date of death. The interviews use the
2014 WHO VA questionnaire and are coded by the InterVA-4
algorithm21. From April 2020 we asked 6 additional questions
(Table S7) that were based on WHO recommendations, intending to
identify possible COVID-19 deaths21.

Mortality rates were calculated as the number of deaths divided
by person-years of observation (PYO). PYO was calculated as the time
from the latest of birth or in-migration or study start date to the ear-
liest of death or out-migration or study end date. Individuals’ periods
of residence outside the Kilifi HDSS area were excluded. As excess
mortality is temporally linked to COVID-19 waves, models fitted to
monthly mortality counts from January 2010 to December 2018 were
used to predict a counterfactual scenario for mortality in the absence
of COVID-19 from January 2020 to April 2022. We chose January 2010
to December 2018 as the baseline period because mortality rates were
stable during this decade37.

We modelled monthly death counts using negative binomial
regression and computed the 95% prediction intervals (95% PI) for
each expected death count as the range from the 5th and 95th per-
centiles of 100 model simulations. The model included a log-linear
trend, sine and cosine terms to account for seasonality, and anoffset to
account for changes in person-years of observation (Equation S1). The
model was fitted using the glm.nb function in R. We conducted an
internal validation of the model using data from the pre-pandemic
period (2010–2018) by excluding one pre-pandemic year at a time and
using data from the remaining years to predict mortality for that year.
We then assessed the magnitude and direction of the difference
between the expected deaths and the observed deaths in the year of
interest. Additionally, we compared the distribution of the observed
monthly death counts to the predicted distribution from the negative
binomialmodel (Fig. S3).We considered the impact of air temperature
on all-cause mortality using air temperature data (for the area covered
by the KHDSS) from the Copernicus ERA5 global weather and climate
reanalysis dataset39.

Excess mortality was calculated as the difference between the
observed and predicted number of deaths in the COVID-19 period
expressed as a percentage of the predicted number of deaths or as a
rate per 100,000person-years observed.We used 1st April 2020 as the
start of the analysis period during the pandemic because the interval
from infection to death is approximately 2–3 weeks23 and it is unlikely
there would have been any COVID-19 deaths before April 2020. We
analysed overall and sex-specific excess mortality from 1st January
2020 to 31st March 2020, in each of the first 5 waves and for the entire
duration.

We locked our demographic database on 21st June 2023 and
censored our analytic dataset on 5th May 2022, the date our 52nd

HDSS re-enumeration round was completed. The interval between
censoring and locking allowed ample opportunity to capture deaths
that may have been missed during the 52nd round.

The Kilifi HDSS population is re-enumerated every 4 months
because infant deathsmay bemissedwith longer intervals; a childmay
be born and die without any enumeration contact. The suspension of
the HDSS field operations on 23rd March 2020 extended this re-
enumeration interval from 4 to 11 months and it is likely that
the ascertainment of infant deaths was reduced in this period.
Therefore, we excluded infants from the estimation of overall excess
mortality. In-migrants may also enter and die before they can be
enumerated. The increased interval between re-enumeration
rounds also reduced the number of PYO, and associated deaths, that
were captured among in-migrants. Use of actual PYO to estimate
mortality rates, and the correspondence between observed risk time
and observed deaths mitigated against any bias in estimating mortal-
ity. However, to assess mortality changes that may have arisen due to
variable detection of in-migrant deaths, we compared the mortality
risk of the snapshot cohort of Kilifi HDSS residents from 23rd March
2020 up to the 25th of October 2020 (the period that fieldwork was
suspended) to similar snapshot cohort analyses beginning 23rdMarch
and terminating on 25th October in each year of the baseline period,
and in 2021.

Although fieldwork was suspended temporarily in 2020, deaths
occurring in the suspension period were ascertained as soon as field
studies resumed. However, even after the resumption of field activ-
ities, social restrictions may have limited access to some houses,
thereby reducing the quality of information gathered; we examined
this possibility by analysing the source of each re-enumeration record
(household members vs neighbours) during the pandemic years
compared to the baseline period.

We calculated cause-specific mortality fractions in 10 categories;
the 9 leading causes of death in children and adults and ‘all other
causes’; the specific causes examined were Acute Respiratory Infec-
tions (ARI), unspecified cardiac disease, stroke, pulmonary tubercu-
losis, malaria, HIV-related deaths, digestive neoplasm, acute
abdominal conditions, and Road Traffic Accidents (RTA).

For any death with at least one positive response to the 6 VA
COVID-19 questions proposed by the WHO, we applied two dis-
criminating processes. Firstly, we invited two independent reviewers
to conduct Physician Certified Verbal Autopsy (PCVA) using clinical
information collected during a VA interview and classified each death
as a probable, possible or unlikely COVID-19 death. Discordant cases
were resolved jointly by the reviewers. Secondly,weused theCOVID-19
Rapid Mortality Surveillance (CRMS) software22, which is a simplified
version of the probabilistic modelling methods used in the InterVA-4
models, to derive the probability that the death was COVID-19 related.
We used a probability cut-off value of 0.89 based on a validation study
conducted in Brazil40.

Data used in this study were collected and stored in a relational
MySQL (version 5.6.46 Enterprise Edition) database using tablets
which had electronic forms specified using PHP-MySQL (v7.2.32). All
analyses were conducted using STATA/IC version 15.1 (StataCorp
College Station, Texas, USA, RRID:SCR_012763) and R version 4.3.1
(RRID:SCR_001905).

Ethics approval and consent to participate
Individual verbal consent to participate in a continuous health and
demographic surveillance system was sought at the household level
using a specific informed consent form. Written informed consent
was obtained by interviewers from all VA respondents. This study
was approved by the Ethical Review Committee of the Kenya
Medical Research Institute (approval number: KEMRI/SERU/CGMR-C/
007/3057).
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Underlying individual data include geo-located residence and indivi-
dual hospital records and hence would be a high risk for identifiability.
Intermediary data have been published on the HavardDatabase Server
(https://doi.org/10.7910/DVN/HAGRAK) under a CCBY 4.0 license. All
data requestswill processedby theDataGovernanceCommittee of the
KEMRI-Wellcome Trust Research Programme (Email: dgc@kemri-
wellcome.org)

Code availability
Codes for conducting the analysis are also available on the Havard
Dataverse Server (https://doi.org/10.7910/DVN/HAGRAK)
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