8 research outputs found

    Red blood cell indices and\ud Prevalence of Hemoglobinopathies and Glucose 6 Phosphate Dehydrogenase Deficiencies in Male Tanzanian Residents of Dar es Salaam

    Get PDF
    Hemoglobinopathies, disorders of hemoglobin structure and production, are one of the most common monogenic disorders in humans. Glucose 6 phosphate dehydrogenase deficiency (G6PD) is an inherited enzymopathy resulting in increased oxygen stress susceptibility of red blood cells. The distributions of these genetic traits in populations living in tropical and subtropical regions where malaria has been or is still present are thought to result from survival advantage against severe life threatening malaria disease. 384 male Tanzanian volunteers residing in Dar es Salaam were typed for G6PD, sickle cell disease and α-thalassemia. The most prominent red blood cell polymorphism was heterozygous α+-thalassemia (37.8%), followed by the G6PD(A) deficiency (16.4%), heterozygous sickle cell trait (15.9%), G6PD(A-) deficiency (13.5%) and homozygous α+-thalassemia (5.2%). 35%, 45%, 17% and 3% of these volunteers were carriers of wild type gene loci, one, two or three of these hemoglobinopathies, respectively. We find that using a cut off value of 28.6 pg. for mean corpuscular hemoglobin (MCH), heterozygous α+-thalassemia can be predicted with a sensitivity of 84% and specificity of 72% in this male population. All subjects carrying homozygous α+-thalassemia were identified based on their MCH value < 28.6 pg

    Understanding the role of serological and clinical data on assessing the dynamic of malaria transmission: a case study of Bagamoyo district, Tanzania

    Get PDF
    A research article is submitted in Research | Volume 43, Article 60, 07 Oct 2022Introduction: naturally acquired blood-stage malaria antibodies and malaria clinical data have been reported to be useful in monitoring malaria change over time and as a marker of malaria exposure. This study assessed the totalimmunoglobulin G (IgG) levels to Plasmodium falciparum schizont among infants (5-17 months), estimated malaria incidence using routine health Facility-based surveillance data and predicted trend relation between anti-schizont antibodies and malaria incidence in Bagamoyo. Methods: 252 serum samples were used for assessment of total IgG by enzyme-linked immunosorbent assay and results were expressed in arbitrary units (AU).147/252 samples were collected in 2021 during a blood-stage malaria vaccine trial [ClinicalTrials.gov NCT04318002], and 105/252 were archived samples of malaria vaccine trial conducted in 2012 [ClinicalTrials.gov NCT00866619]. Malaria incidence was calculated from outpatient clinic data of malaria rapid test or blood smear positive results retrieved from District-Health-Information- Software-2 (DHIS2) between 2013 and 2020. Cross-sectional data from both studies were analyzed using STATA version 14. Results: this study demonstrated a decline in total anti-schizont IgG levels from 490.21AU in 2012 to 97.07AU in 2021 which was related to a fall in incidence from 58.25 cases/1000 person-year in 2013 to 14.28 cases/1000 person-year in 2020. We also observed a significant difference in incidence when comparing high and low malaria transmission areas and by gender. However, we did not observe differences when comparing total anti-schizont antibodies by gender and study year. Conclusion: total anti-schizont antibody levels appear to be an important serological marker of exposure for assessing the dynamic of malaria transmission in infants living in malaria-endemic regions

    Using haematophagous fly blood meals to study the diversity of blood‐borne pathogens infecting wild mammals

    Get PDF
    Many emerging infectious diseases originate from wild animals, so there is a profound need for surveillance and monitoring of their pathogens. However, the practical difficulty of sample acquisition from wild animals tends to limit the feasibility and effectiveness of such surveys. Xenosurveillance, using blood-feeding invertebrates to obtain tissue samples from wild animals and then detect their pathogens, is a promising method to do so. Here, we describe the use of tsetse fly blood meals to determine (directly through molecular diagnostic and indirectly through serology), the diversity of circulating blood-borne pathogens (including bacteria, viruses and protozoa) in a natural mammalian community of Tanzania. Molecular analyses of captured tsetse flies (182 pools of flies totalizing 1728 flies) revealed that the blood meals obtained came from 18 different vertebrate species including 16 non-human mammals, representing approximately 25% of the large mammal species present in the study area. Molecular diagnostic demonstrated the presence of different protozoa parasites and bacteria of medical and/or veterinary interest. None of the six virus species searched for by molecular methods were detected but an ELISA test detected antibodies against African swine fever virus among warthogs, indicating that the virus had been circulating in the area. Sampling of blood-feeding insects represents an efficient and practical approach to tracking a diversity of pathogens from multiple mammalian species, directly through molecular diagnostic or indirectly through serology, which could readily expand and enhance our understanding of the ecology and evolution of infectious agents and their interactions with their hosts in wild animal communities

    A multiplex qPCR approach for detection of pfhrp2 and pfhrp3 gene deletions in multiple strain infections of Plasmodium falciparum

    Get PDF
    The rapid and accurate diagnosis of Plasmodium falciparum malaria infection is an essential factor in malaria control. Currently, malaria diagnosis in the field depends heavily on using rapid diagnostic tests (RDTs) many of which detect circulating parasite-derived histidine-rich protein 2 antigen (PfHRP2) in capillary blood. P. falciparum strains lacking PfHRP2, due to pfhrp2 gene deletions, are an emerging threat to malaria control programs. The novel assay described here, named qHRP2/3-del, is well suited for high-throughput screening of P. falciparum isolates to identify these gene deletions. The qHRP2/3-del assay identified pfhrp2 and pfhrp3 deletion status correctly in 93.4% of samples with parasitemia levels higher than 5 parasites/µL when compared to nested PCR. The qHRP2/3-del assay can correctly identify pfhrp2 and pfhrp3 gene deletions in multiple strain co-infections, particularly prevalent in Sub-Saharan countries. Deployment of this qHRP2/3-del assay will provide rapid insight into the prevalence and potential spread of P. falciparum isolates that escape surveillance by RDTs

    Understanding the role of serological and clinical data on assessing the dynamic of malaria transmission: a case study of Bagamoyo district, Tanzania

    Get PDF
    This research article was published in Pan African Medical Journal, Volume 43, 2022.Introduction: naturally acquired blood-stage malaria antibodies and malaria clinical data have been reported to be useful in monitoring malaria change over time and as a marker of malaria exposure. This study assessed the total immunoglobulin G(IgG) levels to Plasmodium falciparum schizont among infants (5-17 months), estimated malaria incidence using routine health facility-based surveillance data and predicted trend relation between anti-schizont antibodies and malaria incidence in Bagamoyo. Methods: 252 serum samples were used for assessment of total IgG by enzyme-linked immunosorbent assay and results were expressed in arbitrary units (AU). 147/252 samples were collected in 2021 during a blood-stage malaria vaccine trial [ClinicalTrials.gov NCT04318002], and 105/252 were archived samples of malaria vaccine trial conducted in 2012 [ClinicalTrials.gov NCT00866619]. Malaria incidence was calculated from outpatient clinic data of malaria rapid test or blood smear positive results retrieved from District-Health-Information Software-2 (DHIS2) between 2013 and 2020. Cross sectional data from both studies were analysed using STATA version 14. Results: this study demonstrated a decline in total anti-schizont IgG levels from 490.21AU in 2012 to 97.07AU in 2021 which was related to a fall in incidence from 58.25 cases/1000 person-year in 2013 to 14.28 cases/1000 person-year in 2020. We also observed a significant difference in incidence when comparing high and low malaria transmission areas and by gender. However, we did not observe differences when comparing total anti-schizont antibodies by gender and study year. Conclusion: total anti-schizont antibody levels appear to be an important serological marker of exposure for assessing the dynamic of malaria transmission in infants living in malaria-endemic regions

    Red blood cell indices and prevalence of hemoglobinopathies and glucose 6 phosphate dehydrogenase deficiencies in male Tanzanian residents of Dar es Salaam

    No full text
    Hemoglobinopathies, disorders of hemoglobin structure and production, are one of the most common monogenic disorders in humans. Glucose 6 phosphate dehydrogenase deficiency (G6PD) is an inherited enzymopathy resulting in increased oxygen stress susceptibility of red blood cells. The distributions of these genetic traits in populations living in tropical and subtropical regions where malaria has been or is still present are thought to result from survival advantage against severe life threatening malaria disease. 384 male Tanzanian volunteers residing in Dar es Salaam were typed for G6PD, sickle cell disease and α-thalassemia. The most prominent red blood cell polymorphism was heterozygous α(+)-thalassemia (37.8%), followed by the G6PD(A) deficiency (16.4%), heterozygous sickle cell trait (15.9%), G6PD(A-) deficiency (13.5%) and homozygous α(+)-thalassemia (5.2%). 35%, 45%, 17% and 3% of these volunteers were carriers of wild type gene loci, one, two or three of these hemoglobinopathies, respectively. We find that using a cut off value of 28.6 pg. for mean corpuscular hemoglobin (MCH), heterozygous α(+)-thalassemia can be predicted with a sensitivity of 84% and specificity of 72% in this male population. All subjects carrying homozygous α(+)-thalassemia were identified based on their MCH value < 28.6 pg

    Safety, immunogenicity, and protective efficacy against controlled human malaria infection of Plasmodium falciparum sporozoites vaccine in Tanzanian adults

    No full text
    We are using controlled human malaria infection (CHMI) by direct venous inoculation (DVI) of cryopreserved, infectious; Plasmodium falciparum; (Pf) sporozoites (SPZ) (PfSPZ Challenge) to try to reduce time and costs of developing PfSPZ Vaccine to prevent malaria in Africa. Immunization with five doses at 0, 4, 8, 12, and 20 weeks of 2.7 × 10; 5; PfSPZ of PfSPZ Vaccine gave 65% vaccine efficacy (VE) at 24 weeks against mosquito bite CHMI in U.S. adults and 52% (time to event) or 29% (proportional) VE over 24 weeks against naturally transmitted Pf in Malian adults. We assessed the identical regimen in Tanzanians for VE against PfSPZ Challenge. Twenty- to thirty-year-old men were randomized to receive five doses normal saline or PfSPZ Vaccine in a double-blind trial. Vaccine efficacy was assessed 3 and 24 weeks later. Adverse events were similar in vaccinees and controls. Antibody responses to Pf circumsporozoite protein were significantly lower than in malaria-naïve Americans, but significantly higher than in Malians. All 18 controls developed Pf parasitemia after CHMI. Four of 20 (20%) vaccinees remained uninfected after 3 week CHMI (; P; = 0.015 by time to event,; P; = 0.543 by proportional analysis) and all four (100%) were uninfected after repeat 24 week CHMI (; P; = 0.005 by proportional,; P; = 0.004 by time to event analysis).; Plasmodium falciparum; SPZ Vaccine was safe, well tolerated, and induced durable VE in four subjects. Controlled human malaria infection by DVI of PfSPZ Challenge appeared more stringent over 24 weeks than mosquito bite CHMI in United States or natural exposure in Malian adults, thereby providing a rigorous test of VE in Africa
    corecore