565 research outputs found

    All-sky Relative Opacity Mapping Using Night Time Panoramic Images

    Full text link
    An all-sky cloud monitoring system that generates relative opacity maps over many of the world's premier astronomical observatories is described. Photometric measurements of numerous background stars are combined with simultaneous sky brightness measurements to differentiate thin clouds from sky glow sources such as air glow and zodiacal light. The system takes a continuous pipeline of all-sky images, and compares them to canonical images taken on other nights at the same sidereal time. Data interpolation then yields transmission maps covering almost the entire sky. An implementation of this system is currently operating through the Night Sky Live network of CONCAM3s located at Cerro Pachon (Chile), Mauna Kea (Hawaii), Haleakala (Hawaii), SALT (South Africa) and the Canary Islands (Northwestern Africa).Comment: Accepted for publication in PAS

    A Public Ks-selected Catalog in the COSMOS/UltraVISTA Field: Photometry, Photometric Redshifts and Stellar Population Parameters

    Full text link
    We present a catalog covering 1.62 deg^2 of the COSMOS/UltraVISTA field with PSF-matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15um - 24um including the available GALEX, Subaru, CFHT, VISTA and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA Ks band imaging that reaches a depth of K_{s,tot} = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z_phot) for all galaxies computed with the EAZY code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z ~ 1.5 the z_phot are accurate to dz/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z_phot also show good agreement with the z_phot from the NEWFIRM Medium Band Survey (NMBS) out to z ~ 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U-V and V-J colors, L_2800 and L_IR. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z ~ 2. Star-forming galaxies also obey a star forming "main sequence" out to z ~ 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA Ks-selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z ~ 3 - 4.Comment: 20 pages, 14 figures. Accepted to the ApJSS. Catalog data products available for download here: http://www.strw.leidenuniv.nl/galaxyevolution/ULTRAVISTA

    Stellar mass functions of galaxies at 4<z<7 from an IRAC-selected sample in COSMOS/UltraVISTA: limits on the abundance of very massive galaxies

    Get PDF
    We build a Spitzer IRAC complete catalog of objects, obtained by complementing the KsK_\mathrm{s}-band selected UltraVISTA catalog with objects detected in IRAC only. With the aim of identifying massive (i.e., log(M/M)>11\log(M_*/M_\odot)>11) galaxies at 4<z<74<z<7, we consider the systematic effects on the measured photometric redshifts from the introduction of an old and dusty SED template and from the introduction of a bayesian prior taking into account the brightness of the objects, as well as the systematic effects from different star formation histories (SFHs) and from nebular emission lines in the recovery of stellar population parameters. We show that our results are most affected by the bayesian luminosity prior, while nebular emission lines and SFHs only introduce a small dispersion in the measurements. Specifically, the number of 4<z<74<z<7 galaxies ranges from 52 to 382 depending on the adopted configuration. Using these results we investigate, for the first time, the evolution of the massive end of the stellar mass functions (SMFs) at 4<z<74<z<7. Given the rarity of very massive galaxies in the early universe, major contributions to the total error budget come from cosmic variance and poisson noise. The SMF obtained without the introduction of the bayesian luminosity prior does not show any evolution from z6.5z\sim6.5 to z3.5z\sim 3.5, implying that massive galaxies could already be present when the Universe was 0.9\sim0.9~Gyr old. However, the introduction of the bayesian luminosity prior reduces the number of z>4z>4 galaxies with best fit masses log(M/M)>11\log(M_*/M_\odot)>11 by 83%, implying a rapid growth of very massive galaxies in the first 1.5 Gyr of cosmic history. From the stellar-mass complete sample, we identify one candidate of a very massive (log(M/M)11.5\log(M_*/M_\odot)\sim11.5), quiescent galaxy at z5.4z\sim5.4, with MIPS 24μ24\mum detection suggesting the presence of a powerful obscured AGN.Comment: 23 pages, 18 figures. ApJ accepte

    The Progenitors of Local Ultra-massive Galaxies Across Cosmic Time: from Dusty Star-bursting to Quiescent Stellar Populations

    Full text link
    Using the UltraVISTA catalogs, we investigate the evolution in the 11.4~Gyr since z=3z=3 of the progenitors of local ultra-massive galaxies (log(Mstar/M)11.8\log{(M_{\rm star}/M_{\odot})}\approx11.8; UMGs), providing a complete and consistent picture of how the most massive galaxies at z=0z=0 have assembled. By selecting the progenitors with a semi-empirical approach using abundance matching, we infer a growth in stellar mass of 0.560.25+0.35^{+0.35}_{-0.25} dex, 0.450.20+0.16^{+0.16}_{-0.20}~dex, and 0.270.12+0.08^{+0.08}_{-0.12} dex from z=3z=3, z=2z=2, and z=1z=1, respectively, to z=0z=0. At z<1z<1, the progenitors of UMGs constitute a homogeneous population of only quiescent galaxies with old stellar populations. At z>1z>1, the contribution from star-forming galaxies progressively increases, with the progenitors at 2<z<32<z<3 being dominated by massive (Mstar2×1011M_{\rm star} \approx 2 \times 10^{11}M_{\odot}), dusty (AVA_{\rm V}\sim1--2.2 mag), star-forming (SFR\sim100--400~M_{\odot} yr1^{-1}) galaxies with a large range in stellar ages. At z=2.75z=2.75, \sim15\% of the progenitors are quiescent, with properties typical of post-starburst galaxies with little dust extinction and strong Balmer break, and showing a large scatter in color. Our findings indicate that at least half of the stellar content of local UMGs was assembled at z>1z>1, whereas the remaining was assembled via merging from z1z\sim 1 to the present. Most of the quenching of the star-forming progenitors happened between z=2.75z=2.75 and z=1.25z=1.25, in good agreement with the typical formation redshift and scatter in age of z=0z=0 UMGs as derived from their fossil records. The progenitors of local UMGs, including the star-forming ones, never lived on the blue cloud since z=3z=3. We propose an alternative path for the formation of local UMGs that refines previously proposed pictures and that is fully consistent with our findings.Comment: 20 pages, 15 figures (6 of which in appendix); accepted for publication in the Astrophysical Journa

    The Evolution of the Stellar Mass Functions of Star-Forming and Quiescent Galaxies to z = 4 from the COSMOS/UltraVISTA Survey

    Get PDF
    We present measurements of the stellar mass functions (SMFs) of star-forming and quiescent galaxies to z = 4 using a sample of 95 675 galaxies in the COSMOS/UltraVISTA field. Sources have been selected from the DR1 UltraVISTA K_{s}-band imaging which covers a unique combination of a wide area (1.62 deg^2), to a significant depth (K_{s,tot} = 23.4). The SMFs of the combined population are in good agreement with previous measurements and show that the stellar mass density of the universe was only 50%, 10% and 1% of its current value at z ~ 0.75, 2.0, and 3.5, respectively. The quiescent population drives most of the overall growth, with the stellar mass density of these galaxies increasing by 2.71^{+0.93}_{-0.22} dex since z = 3.5. At z > 2.5, star-forming galaxies dominate the total SMF at all stellar masses, although a nonzero population of quiescent galaxies persists to z = 4. Comparisons of the K_{s}-selected star-forming galaxy SMFs to UV-selected SMFs at 2.5 < z < 4 show reasonable agreement and suggests UV-selected samples are representative of the majority of the stellar mass density at z > 3.5. We estimate the average mass growth of individual galaxies by selecting galaxies at fixed cumulative number density. The average galaxy with Log(M_{*}/M_{sun}) = 11.5 at z = 0.3 has grown in mass by only 0.2 dex (0.3 dex) since z = 2.0(3.5), whereas those with Log(M_{*}/M_{sun}) = 10.5 have grown by > 1.0 dex since z = 2. At z < 2, the time derivatives of the mass growth are always larger for lower-mass galaxies, which demonstrates that the mass growth in galaxies since that redshift is mass-dependent and primarily bottom-up. Lastly, we examine potential sources of systematic uncertainties on the SMFs and find that those from photo-z templates, SPS modeling, and the definition of quiescent galaxies dominate the total error budget in the SMFs.Comment: 18 pages paper, 12 pages appendix, 23 figures. Accepted for publication in the Ap

    Spectroscopic Confirmation of Two Massive Red-Sequence-Selected Galaxy Clusters at z ~ 1.2 in the SpARCS-North Cluster Survey

    Get PDF
    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a deep z'-band imaging survey covering the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) Legacy fields designed to create the first large homogeneously selected sample of massive clusters at z > 1 using an infrared adaptation of the cluster red-sequence method. We present an overview of the northern component of the survey which has been observed with Canada-France-Hawaii Telescope (CFHT)/MegaCam and covers 28.3 deg^2. The southern component of the survey was observed with Cerro Tololo Inter-American Observatory (CTIO)/MOSAICII, covers 13.6 deg^2, and is summarized in a companion paper by Wilson et al. We also present spectroscopic confirmation of two rich cluster candidates at z ~ 1.2. Based on Nod-and-Shuffle spectroscopy from GMOS-N on Gemini, there are 17 and 28 confirmed cluster members in SpARCS J163435+402151 and SpARCS J163852+403843 which have spectroscopic redshifts of 1.1798 and 1.1963, respectively. The clusters have velocity dispersions of 490 ± 140 km s^(–1) and 650 ± 160 km s^(–1), respectively, which imply masses (M_(200)) of (1.0 ± 0.9) × 10^(14) M_⊙ and (2.4 ± 1.8) × 10^(14) M_⊙. Confirmation of these candidates as bonafide massive clusters demonstrates that two-filter imaging is an effective, yet observationally efficient, method for selecting clusters at z > 1

    Upregulation of peroxisome proliferator-activated receptor gamma coactivator gene ( PGC1A ) during weight loss is related to insulin sensitivity but not to energy expenditure

    Get PDF
    Aims/hypothesis: We investigated whether skeletal muscle peroxisome proliferator-activated receptor gamma coactivator-1 (PGC1A; also known as PPARGC1A) and its target mitofusin-2 (MFN2), as well as carnitine palmitoyltransferase-1 (CPT1; also known as carnitine palmitoyltransferase 1A [liver] [CPT1A]) and uncoupling protein (UCP)3, are involved in the improvement of insulin resistance and/or in the modification of energy expenditure during surgically induced massive weight loss. Materials and methods: Seventeen morbidly obese women (mean BMI: 45.9 ± 4kg/m2) were investigated before, and 3 and 12months after, Roux-en-Y gastric bypass (RYGB). We evaluated insulin sensitivity by the euglycaemic-hyperinsulinaemic clamp, energy expenditure and substrate oxidation by indirect calorimetry, and muscle mRNA expression by PCR. Results: Post-operatively, PGC1A was enhanced at 3 (p = 0.02) and 12months (p = 0.03) as was MFN2 (p = 0.008 and p = 0.03 at 3 and 12months respectively), whereas UCP3 was reduced (p = 0.03) at 12months. CPT1 did not change. The expression of PGC1A and MFN2 were strongly (p < 0.0001) related. Insulin sensitivity, which increased after surgery (p = 0.002 at 3, p = 0.003 at 12months), was significantly related to PGC1A and MFN2, but only MFN2 showed an independent influence in a multiple regression analysis. Energy expenditure was reduced at 3months post-operatively (p = 0.001 vs before RYGB), remaining unchanged thereafter until 12months. CPT1 and UCP3 were not significantly related to the modifications of energy expenditure or of lipid oxidation rate. Conclusions/interpretation: Weight loss upregulates PGC1A, which in turn stimulates MFN2 expression. MFN2 expression significantly and independently contributes to the improvement of insulin sensitivity. UCP3 and CPT1 do not seem to influence energy expenditure after RYG

    Spectroscopic Confirmation of a Massive Red-Sequence-Selected Galaxy Cluster at z = 1.34 in the SpARCS-South Cluster Survey

    Get PDF
    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a z'-passband imaging survey, consisting of deep (z' ~ 24 AB) observations made from both hemispheres using the CFHT 3.6m and CTIO 4m telescopes. The survey was designed with the primary aim of detecting galaxy clusters at z >~ 1. In tandem with pre-existing 3.6um observations from the Spitzer Space Telescope SWIRE Legacy Survey, SpARCS detects clusters using an infrared adaptation of the two-filter red-sequence cluster technique. The total effective area of the SpARCS cluster survey is 41.9 deg^2. In this paper, we provide an overview of the 13.6 deg^2 Southern CTIO/MOSAICII observations. The 28.3 deg^2 Northern CFHT/MegaCam observations are summarized in a companion paper by Muzzin et al. (2008). In this paper, we also report spectroscopic confirmation of SpARCS J003550-431224, a very rich galaxy cluster at z = 1.335, discovered in the ELAIS-S1 field. To date, this is the highest spectroscopically confirmed redshift for a galaxy cluster discovered using the red-sequence technique. Based on nine confirmed members, SpARCS J003550-431224 has a preliminary velocity dispersion of 1050 +/- 230 km/s. With its proven capability for efficient cluster detection, SpARCS is a demonstration that we have entered an era of large, homogeneously-selected z > 1 cluster surveys.Comment: 10 pages, 6 Figures, Submitted to the Ap
    corecore