5 research outputs found

    Accelerated discovery of molecular nanojunction photocatalysts for hydrogen evolution by using automated screening and flow synthesis

    Get PDF
    Discovering and optimizing multicomponent organic semiconductors is typically a laborious process. High-throughput experimentation can accelerate this, but the results of small-scale screening trials are not always transferable to bulk materials production. Here we report the accelerated discovery of molecular nanojunction photocatalysts based on a combinatorial donor–acceptor molecular library assisted by high-throughput automated screening. The knowledge gained from this high-throughput batch screening is then transferred to a scaled-up, flow-based synthesis process. The scaled-up molecular nanojunction MTPA-CA:CNP147 (3-(4-(bis(4-methoxyphenyl)amino)phenyl)-2-cyanoacrylic acid:2,6-bis(4-cyanophenyl)-4-(4′-fluoro-[1,1′-biphenyl]-4-yl)pyridine-3,5-dicarbonitrile) exhibits a sacrificial hydrogen evolution rate of 330.3 mmol h−1 g−1 with an external quantum efficiency of 80.3% at 350 nm, which are among the highest reported for an organic photocatalyst. A one-dimensional nanofibre architecture is identified for this molecular nanojunction, which exhibits efficient charge separation. Electronic structure–property correlations across the photocatalyst library show that a moderate binding energy between the donor and the acceptor molecules is a potential factor for efficient molecular nanojunction formation

    Sodium Arsenite-Induced Learning and Memory Impairment Is Associated with Endoplasmic Reticulum Stress-Mediated Apoptosis in Rat Hippocampus

    No full text
    Chronic arsenic exposure has been associated to cognitive deficits. However, mechanisms remain unknown. The present study investigated the neurotoxic effects of sodium arsenite in drinking water over different dosages and time periods. Based on results from the Morris water maze (MWM) and morphological analysis, an exposure to sodium arsenite could induce neuronal damage in the hippocampus, reduce learning ability, and accelerate memory impairment. Sodium arsenite significantly increased homocysteine levels in serum and brain. Moreover, sodium arsenite triggered unfolded protein response (UPR), leading to the phosphorylation of RNA-regulated protein kinase-like ER kinase (PERK) and eukaryotic translation initiation factor 2 subunit α (eIF2α), and the induction of activating transcription factor 4 (ATF4). Arsenite exposure also stimulated the expression of the endoplasmic reticulum (ER) stress markers, glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and the cleavage of caspase-12. Furthermore, exposure to arsenite enhanced apoptosis as demonstrated by expression of caspase-3 and TUNEL assay in the hippocampus. The results suggest that exposure to arsenite can significantly decrease learning ability and accelerate memory impairment. Potential mechanisms are related to enhancement of homocysteine and ER stress-induced apoptosis in the hippocampus
    corecore