274 research outputs found

    Secure Vehicular Communication Systems: Implementation, Performance, and Research Challenges

    Get PDF
    Vehicular Communication (VC) systems are on the verge of practical deployment. Nonetheless, their security and privacy protection is one of the problems that have been addressed only recently. In order to show the feasibility of secure VC, certain implementations are required. In [1] we discuss the design of a VC security system that has emerged as a result of the European SeVeCom project. In this second paper, we discuss various issues related to the implementation and deployment aspects of secure VC systems. Moreover, we provide an outlook on open security research issues that will arise as VC systems develop from today's simple prototypes to full-fledged systems

    Recurrent pregnancy loss is associated with a pro-senescent decidual response during the peri-implantation window

    Get PDF
    During the implantation window, the endometrium becomes poised to transition to a pregnant state, a process driven by differentiation of stromal cells into decidual cells (DC). Perturbations in this process, termed decidualization, leads to breakdown of the feto-maternal interface and miscarriage, but the underlying mechanisms are poorly understood. Here, we reconstructed the decidual pathway at single-cell level in vitro and demonstrate that stromal cells first mount an acute stress response before emerging as DC or senescent DC (snDC). In the absence of immune cell-mediated clearance of snDC, secondary senescence transforms DC into progesterone-resistant cells that abundantly express extracellular matrix remodelling factors. Additional single-cell analysis of midluteal endometrium identified DIO2 and SCARA5 as marker genes of a diverging decidual response in vivo. Finally, we report a conspicuous link between a pro-senescent decidual response in peri-implantation endometrium and recurrent pregnancy loss, suggesting that pre-pregnancy screening and intervention may reduce the burden of miscarriage

    Impact of sitagliptin on endometrial mesenchymal stem-like progenitor cells : a randomised, double-blind placebo-controlled feasibility trial

    Get PDF
    Background: Recurrent pregnancy loss (RPL) is associated with the loss of endometrial mesenchymal stem-like progenitor cells (eMSC). DPP4 inhibitors may increase homing and engraftment of bone marrow-derived cells to sites of tissue injury. Here, we evaluated the effect of the DPP4 inhibitor sitagliptin on eMSC in women with RPL, determined the impact on endometrial decidualization, and assessed the feasibility of a full-scale clinical trial. Methods: A double-blind, randomised, placebo-controlled feasibility trial on women aged 18 to 42 years with a history of 3 or more miscarriages, regular menstrual cycles, and no contraindications to sitagliptin. Thirty-eight subjects were randomised to either 100 mg sitagliptin daily for 3 consecutive cycles or identical placebo capsules. Computer generated, permuted block randomisation was used to allocate treatment packs. Colony forming unit (CFU) assays were used to quantify eMSC in midluteal endometrial biopsies. The primary outcome measure was CFU counts. Secondary outcome measures were endometrial thickness, study acceptability, and first pregnancy outcome within 12 months following the study. Tissue samples were subjected to explorative investigations. Findings: CFU counts following sitagliptin were higher compared to placebo only when adjusted for baseline CFU counts and age (RR: 1.52, 95% CI: 1.32–1.75, P<0.01). The change in CFU count was 1.68 in the sitagliptin group and 1.08 in the placebo group. Trial recruitment, acceptability, and drug compliance were high. There were no serious adverse events. Explorative investigations showed that sitagliptin inhibits the expression of DIO2, a marker gene of senescent decidual cells. Interpretation: Sitagliptin increases eMSCs and decreases decidual senescence. A large-scale clinical trial evaluating the impact of preconception sitagliptin treatment on pregnancy outcome in RPL is feasible and warranted. Funding: Tommy's Baby Charity. Clinical trial registration: EU Clinical Trials Register no. 2016-001120-54

    The role of decidual subpopulations at implantation, menstruation and miscarriage

    Get PDF
    In each menstrual cycle, the endometrium becomes receptive to embryo implantation while preparing for tissue breakdown and repair. Both pregnancy and menstruation are dependent on spontaneous decidualization of endometrial stromal cells, a progesterone-dependent process that follows rapid, estrogen-dependent proliferation. During the implantation window, stromal cells mount an acute stress response, which leads to the emergence of functionally distinct decidual subsets, reflecting the level of replication stress incurred during the preceding proliferative phase. Progesterone-dependent, anti-inflammatory decidual cells (DeC) form a robust matrix and recruit bone marrow-derived decidual progenitors to accommodate the conceptus whereas pro-inflammatory, progesterone-resistant stressed and senescent decidual cells (senDeC) control tissue remodelling and breakdown. To execute these functions, each decidual subset engage innate immune cells: DeC partner with uterine natural killer (uNK) cells to eliminate senDeC, while senDeC co-opt neutrophils and macrophages to assist with tissue breakdown and repair. Thus, successful transformation of cycling endometrium into the decidua of pregnancy not only requires continues progesterone signalling but dominance of DeC over senDeC, aided by recruitment and differentiation of circulating NK cells and bone marrow-derived progenitors. We discuss how the frequency of cycles resulting in imbalanced decidual subpopulations determines the recurrence risk of miscarriage and discuss emerging therapeutic strategies

    Loss of Endometrial Plasticity in Recurrent Pregnancy Loss

    Get PDF
    © 2015 AlphaMed Press.Menstruation drives cyclic activation of endometrial progenitor cells, tissue regeneration, and maturation of stromal cells, which differentiate into specialized decidual cells prior to and during pregnancy. Aberrant responsiveness of human endometrial stromal cells (HESCs) to deciduogenic cues is strongly associated with recurrent pregnancy loss (RPL), suggesting a defect in cellular maturation. MeDIP-seq analysis of HESCs did not reveal gross perturbations in CpG methylation in RPL cultures, although quantitative differences were observed in or near genes that are frequently deregulated in vivo. However, RPL was associated with a marked reduction in methylation of defined CA-rich motifs located throughout the genome but enriched near telomeres. Non-CpG methylation is a hallmark of cellular multipotency. Congruently, we demonstrate that RPL is associated with a deficiency in endometrial clonogenic cell populations. Loss of epigenetic stemness features also correlated with intragenic CpG hypomethylation and reduced expression of HMGB2, coding high mobility group protein 2. We show that knockdown of this sequence-independent chromatin protein in HESCs promotes senescence and impairs decidualization, exemplified by blunted time-dependent secretome changes. Our findings indicate that stem cell deficiency and accelerated stromal senescence limit the differentiation capacity of the endometrium and predispose for pregnancy failure. Stem Cells 2016;34:346-356 Recurrent pregnancy loss is caused by endometrial stem cell deficiency, triggering heightened tissue senescence and impaired decidualization

    JAZF1-SUZ12 dysregulates PRC2 function and gene expression during cell differentiation

    Get PDF
    Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 (H3K27me3) to maintain gene repression and is essential for cell differentiation. In low-grade endometrial stromal sarcoma (LG-ESS), the PRC2 subunit SUZ12 is often fused with the NuA4/TIP60 subunit JAZF1. We show that JAZF1-SUZ12 dysregulates PRC2 composition, genome occupancy, histone modification, gene expression, and cell differentiation. Loss of the SUZ12 N terminus in the fusion protein abrogates interaction with specific PRC2 accessory factors, reduces occupancy at PRC2 target genes, and diminishes H3K27me3. Fusion to JAZF1 increases H4Kac at PRC2 target genes and triggers recruitment to JAZF1 binding sites during cell differentiation. In human endometrial stromal cells, JAZF1-SUZ12 upregulated PRC2 target genes normally activated during decidualization while repressing genes associated with immune clearance, and JAZF1-SUZ12-induced genes were also overexpressed in LG-ESS. These results reveal defects in chromatin regulation, gene expression, and cell differentiation caused by JAZF1-SUZ12 that may underlie its role in oncogenesis

    Predicting dyslexia using prereading skills:the role of sensorimotor and cognitive abilities

    Get PDF
    Background: It is well established that phonological awareness, print knowledge and rapid naming predict later reading difficulties. However, additional auditory, visual and motor difficulties have also been observed in dyslexic children. It is examined to what extent these difficulties can be used to predict later literacy difficulties. Method: An unselected sample of 267 children at school entry completed a wide battery of tasks associated with dyslexia. Their reading was tested 2, 3 and 4 years later and poor readers were identified (n = 42). Logistic regression and multiple case study approaches were used to examine the predictive validity of different tasks. Results: As expected, print knowledge, verbal short-term memory, phonological awareness and rapid naming were good predictors of later poor reading. Deficits in visual search and in auditory processing were also present in a large minority of the poor readers. Almost all poor readers showed deficits in at least one area at school entry, but there was no single deficit that characterised the majority of poor readers. Conclusions: Results are in line with Pennington’s (2006) multiple deficits view of dyslexia. They indicate that the causes of poor reading outcome are multiple, interacting and probabilistic, rather than deterministic. Keywords: Dyslexia; educational attainment; longitudinal studies; prediction; phonological processing

    Covalent attachment of fibronectin onto emulsion‐templated porous polymer scaffolds enhances human endometrial stromal cell adhesion, infiltration, and function

    Get PDF
    A novel strategy for the surface functionalization of emulsion‐templated highly porous (polyHIPE) materials as well as its application to in vitro 3D cell culture is presented. A heterobifunctional linker that consists of an amine‐reactive N‐hydroxysuccinimide ester and a photoactivatable nitrophenyl azide, N‐sulfosuccinimidyl‐6‐(4′‐azido‐2′‐nitrophenylamino)hexanoate (sulfo‐SANPAH), is utilized to functionalize polyHIPE surfaces. The ability to conjugate a range of compounds (6‐aminofluorescein, heptafluorobutylamine, poly(ethylene glycol) bis‐amine, and fibronectin) to the polyHIPE surface is demonstrated using fluorescence imaging, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. Compared to other existing surface functionalization methods for polyHIPE materials, this approach is facile, efficient, versatile, and benign. It can also be used to attach biomolecules to polyHIPE surfaces including cell adhesion‐promoting extracellular matrix proteins. Cell culture experiments demonstrated that the fibronectin‐conjugated polyHIPE scaffolds improve the adhesion and function of primary human endometrial stromal cells. It is believed that this approach can be employed to produce the next generation of polyHIPE scaffolds with tailored surface functionality, enhancing their application in 3D cell culture and tissue engineering whilst broadening the scope of applications to a wider range of cell types

    Analysis of chromatin accessibility in decidualizing human endometrial stromal cells

    Get PDF
    Spontaneous decidualization of the endometrium in response to progesterone signaling is confined to menstruating species, including humans and other higher primates. During this process, endometrial stromal cells (EnSCs) differentiate into specialized decidual cells that control embryo implantation. We subjected undifferentiated and decidualizing human EnSCs to an assay for transposase accessible chromatin with sequencing (ATAC-seq) to map the underlying chromatin changes. A total of 185,084 open DNA loci were mapped accurately in EnSCs. Altered chromatin accessibility upon decidualization was strongly associated with differential gene expression. Analysis of 1533 opening and closing chromatin regions revealed over-representation of DNA binding motifs for known decidual transcription factors (TFs) and identified putative new regulators. ATAC-seq footprint analysis provided evidence of TF binding at specific motifs. One of the largest footprints involved the most enriched motif-basic leucine zipper-as part of a triple motif that also comprised the estrogen receptor and Pax domain binding sites. Without exception, triple motifs were located within Alu elements, which suggests a role for this primate-specific transposable element (TE) in the evolution of decidual genes. Although other TEs were generally under-represented in open chromatin of undifferentiated EnSCs, several classes contributed to the regulatory DNA landscape that underpins decidual gene expression

    Impact of sustained transforming growth factor-β receptor inhibition on chromatin accessibility and gene expression in cultured human endometrial MSC

    Get PDF
    Endometrial mesenchymal stem cells (eMSC) drive the extraordinary regenerative capacity of the human endometrium. Clinical application of eMSC for therapeutic purposes is hampered by spontaneous differentiation and cellular senescence upon large-scale expansion in vitro. A83-01, a selective transforming growth factor-β receptor (TGFβ-R) inhibitor, promotes expansion of eMSC in culture by blocking differentiation and senescence, but the underlying mechanisms are incompletely understood. In this study, we combined RNA-seq and ATAC-seq to study the impact of sustained TGFβ-R inhibition on gene expression and chromatin architecture of eMSC. Treatment of primary eMSC with A83-01 for 5 weeks resulted in differential expression of 1,463 genes. Gene ontology analysis showed enrichment of genes implicated in cell growth whereas extracellular matrix genes and genes involved in cell fate commitment were downregulated. ATAC-seq analysis demonstrated that sustained TGFβ-R inhibition results in opening and closure of 3,555 and 2,412 chromatin loci, respectively. Motif analysis revealed marked enrichment of retinoic acid receptor (RAR) binding sites, which was paralleled by the induction of RARB, encoding retinoic acid receptor beta (RARβ). Selective RARβ inhibition attenuated proliferation and clonogenicity of A83-01 treated eMSC. Taken together, our study provides new insights into the gene networks and genome-wide chromatin changes that underpin maintenance of an undifferentiated phenotype of eMSC in prolonged culture
    corecore