17 research outputs found

    Early development of infants with neurofibromatosis type 1: a case series

    Get PDF
    Background Prospective studies of infants at familial risk for autism spectrum disorder (ASD) have yielded insights into the earliest signs of the disorder but represent heterogeneous samples of unclear aetiology. Complementing this approach by studying cohorts of infants with monogenic syndromes associated with high rates of ASD offers the opportunity to elucidate the factors that lead to ASD. Methods We present the first report from a prospective study of ten 10-month-old infants with neurofibromatosis type 1 (NF1), a monogenic disorder with high prevalence of ASD or ASD symptomatology. We compared data from infants with NF1 to a large cohort of infants at familial risk for ASD, separated by outcome at age 3 of ASD (n = 34), atypical development (n = 44), or typical development (n = 89), and low-risk controls (n = 75). Domains assessed at 10 months by parent report and examiner observation include cognitive and adaptive function, sensory processing, social engagement, and temperament. Results Infants with NF1 showed striking impairments in motor functioning relative to low-risk infants; this pattern was seen in infants with later ASD from the familial cohort (HR-ASD). Both infants with NF1 and the HR-ASD group showed communication delays relative to low-risk infants. Conclusions Ten-month-old infants with NF1 show a range of developmental difficulties that were particularly striking in motor and communication domains. As with HR-ASD infants, social skills at this age were not notably impaired. This is some of the first information on early neurodevelopment in NF1. Strong inferences are limited by the sample size, but the findings suggest implications for early comparative developmental science and highlight motor functioning as an important domain to inform the development of relevant animal models. The findings have clinical implications in indicating an important focus for early surveillance and remediation in this early diagnosed genetic disorder

    Monosodium urate crystals reduce osteocyte viability and indirectly promote a shift in osteocyte function towards a proinflammatory and proresorptive state

    No full text
    Abstract Background Bone erosion is a frequent complication of gout and is strongly associated with tophi, which are lesions comprising inflammatory cells surrounding collections of monosodium urate (MSU) crystals. Osteocytes are important cellular mediators of bone remodeling. The aim of this study was to investigate the direct effects of MSU crystals and indirect effects of MSU crystal-induced inflammation on osteocytes. Methods For direct assays, MSU crystals were added to MLO-Y4 osteocyte cell line cultures or primary mouse osteocyte cultures. For indirect assays, the RAW264.7 macrophage cell line was cultured with or without MSU crystals, and conditioned medium from these cultures was added to MLO-Y4 cells. MLO-Y4 cell viability was assessed using alamarBlue® and LIVE/DEAD® assays, and MLO-Y4 cell gene expression and protein expression were assessed by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Histological analysis was used to examine the relationship between MSU crystals, inflammatory cells, and osteocytes in human joints affected by tophaceous gout. Results In direct assays, MSU crystals reduced MLO-Y4 cell and primary mouse osteocyte viability but did not alter MLO-Y4 cell gene expression. In contrast, conditioned medium from MSU crystal-stimulated RAW264.7 macrophages did not affect MLO-Y4 cell viability but significantly increased MLO-Y4 cell expression of osteocyte-related factors including E11, connexin 43, and RANKL, and inflammatory mediators such as interleukin (IL)-6, IL-11, tumor necrosis factor (TNF)-α and cyclooxygenase-2 (COX-2). Inhibition of COX-2 in MLO-Y4 cells significantly reduced the indirect effects of MSU crystals. In histological analysis, CD68+ macrophages and MSU crystals were identified in close proximity to osteocytes within bone. COX-2 expression was also observed in tophaceous joint samples. Conclusions MSU crystals directly inhibit osteocyte viability and, through interactions with macrophages, indirectly promote a shift in osteocyte function that favors bone resorption and inflammation. These interactions may contribute to disordered bone remodeling in gout

    Pancreatic Stone Protein as a Biomarker for Sepsis at the Emergency Department of a Large Tertiary Hospital

    No full text
    Early recognition of sepsis is essential for improving outcomes and preventing complications such as organ failure, depression, and neurocognitive impairment. The emergency department (ED) plays a key role in the early identification of sepsis, but clinicians lack diagnostic tools. Potentially, biomarkers could be helpful in assisting clinicians in the ED, but no marker has yet been successfully implemented in daily practice with good clinical performance. Pancreatic stone protein (PSP) is a promising biomarker in the context of sepsis, but little is known about the diagnostic performance of PSP in the ED. We prospectively investigated the diagnostic value of PSP in such a population for patients suspected of infection. PSP was compared with currently used biomarkers, including white blood cell count (WBC) and C-reactive protein (CRP). Of the 156 patients included in this study, 74 (47.4%) were diagnosed with uncomplicated infection and 26 (16.7%) patients with sepsis, while 56 (35.9%) eventually had no infection. PSP was significantly higher for sepsis patients compared to patients with no sepsis. In multivariate regression, PSP was a significant predictor for sepsis, with an area under the curve (AUC) of 0.69. Positive and negative predictive values for this model were 100% and 84.4%, respectively. Altogether, these findings show that PSP, measured at the ED of a tertiary hospital, is associated with sepsis but lacks the diagnostic performance to be used as single marker

    Pharmacokinetics of Intramuscularly Administered Ertapenem

    No full text
    Ertapenem (INVANZ) is a new once-a-day parental β-lactam antimicrobial agent that has been shown to be highly effective as a single agent for treatment of various community-acquired and mixed infections. The plasma pharmacokinetics of a 1-g intramuscular (i.m.) dose was compared with those of a 1-g intravenous (i.v.) dose infused over 30 min, the recommended rate of i.v. infusion for comparison, and over 120 min, which more closely mimicked the time course for absorption of the i.m. form. In a three-period crossover study (Part A), 26 healthy subjects received single doses of ertapenem administered i.m., i.v. infused over 30 min, and i.v. infused over 120 min. Blood for ertapenem analysis was collected over 24 h postdose for each treatment. In Part B, these fasted subjects received a 1-g i.m. dose of ertapenem once daily for 7 days. Following a 1-g i.m. dose and a 1-g i.v. dose infused over 120 min, the geometric mean area under the concentration curve from hour 0 to infinity (AUC(0-∞)) was 541.8 μg · hr/ml following i.m. administration and 591.4 μg · hr/ml following a 120-min infusion; the geometric mean ratio was 0.92 with a 90% confidence interval of 0.88 to 0.95. The geometric mean AUC(0-∞) was nearly identical when 1-g doses were infused over 30 or 120 min. Although the maximum concentration of drug in serum was somewhat lower following i.m. administration than following i.v. administration, the shape of the plasma concentration profiles was roughly comparable at later time points. Ertapenem did not accumulate after multiple 1-g i.m. daily doses over 7 days. The geometric mean ratio for AUC(0-24) (day 7/day 1) was 0.98 with a 90% confidence interval of 0.94 to 1.02. Thus, the relative bioavailability of the 1-g i.m. dose was 92%. Ertapenem does not accumulate following multiple daily 1-g i.m. doses over 7 days
    corecore