20 research outputs found

    Seismic risk assessment for developing countries : Pakistan as a case study

    Get PDF
    Modern Earthquake Risk Assessment (ERA) methods usually require seismo-tectonic information for Probabilistic Seismic Hazard Assessment (PSHA) that may not be readily available in developing countries. To bypass this drawback, this paper presents a practical event-based PSHA method that uses instrumental seismicity, available historical seismicity, as well as limited information on geology and tectonic setting. Historical seismicity is integrated with instrumental seismicity to determine the long-term hazard. The tectonic setting is included by assigning seismic source zones associated with known major faults. Monte Carlo simulations are used to generate earthquake catalogues with randomized key hazard parameters. A case study region in Pakistan is selected to demonstrate the effectiveness of the method. The results indicate that the proposed method produces seismic hazard maps consistent with previous studies, thus being suitable for generating such maps in regions where limited data are available. The PSHA procedure is developed as an integral part of an ERA framework named EQRAM. The framework is also used to determine seismic risk in terms of annual losses for the study region

    Pharmacokinetics of Intramuscularly Administered Ertapenem

    No full text
    Ertapenem (INVANZ) is a new once-a-day parental β-lactam antimicrobial agent that has been shown to be highly effective as a single agent for treatment of various community-acquired and mixed infections. The plasma pharmacokinetics of a 1-g intramuscular (i.m.) dose was compared with those of a 1-g intravenous (i.v.) dose infused over 30 min, the recommended rate of i.v. infusion for comparison, and over 120 min, which more closely mimicked the time course for absorption of the i.m. form. In a three-period crossover study (Part A), 26 healthy subjects received single doses of ertapenem administered i.m., i.v. infused over 30 min, and i.v. infused over 120 min. Blood for ertapenem analysis was collected over 24 h postdose for each treatment. In Part B, these fasted subjects received a 1-g i.m. dose of ertapenem once daily for 7 days. Following a 1-g i.m. dose and a 1-g i.v. dose infused over 120 min, the geometric mean area under the concentration curve from hour 0 to infinity (AUC(0-∞)) was 541.8 μg · hr/ml following i.m. administration and 591.4 μg · hr/ml following a 120-min infusion; the geometric mean ratio was 0.92 with a 90% confidence interval of 0.88 to 0.95. The geometric mean AUC(0-∞) was nearly identical when 1-g doses were infused over 30 or 120 min. Although the maximum concentration of drug in serum was somewhat lower following i.m. administration than following i.v. administration, the shape of the plasma concentration profiles was roughly comparable at later time points. Ertapenem did not accumulate after multiple 1-g i.m. daily doses over 7 days. The geometric mean ratio for AUC(0-24) (day 7/day 1) was 0.98 with a 90% confidence interval of 0.94 to 1.02. Thus, the relative bioavailability of the 1-g i.m. dose was 92%. Ertapenem does not accumulate following multiple daily 1-g i.m. doses over 7 days
    corecore