195 research outputs found

    Superstructure-Based Optimization of Vapor Compression-Absorption Cascade Refrigeration Systems

    Get PDF
    A system that combines a vapor compression refrigeration system (VCRS) with a vapor absorption refrigeration system (VARS) merges the advantages of both processes, resulting in a more cost-effective system. In such a cascade system, the electrical power for VCRS and the heat energy for VARS can be significantly reduced, resulting in a coefficient of performance (COP) value higher than the value of each system operating in standalone mode. A previously developed optimization model of a series flow double-effect H2O-LiBr VARS is extended to a superstructure-based optimization model to embed several possible configurations. This model is coupled to an R134a VCRS model. The problem consists in finding the optimal configuration of the cascade system and the sizes and operating conditions of all system components that minimize the total heat transfer area of the system, while satisfying given design specifications (evaporator temperature and refrigeration capacity of −17.0 °C and 50.0 kW, respectively), and using steam at 130 °C, by applying mathematical programming methods. The obtained configuration is different from those reported for combinations of double-effect H2O-LiBr VAR and VCR systems. The obtained optimal configuration is compared to the available data. The obtained total heat transfer area is around 7.3% smaller than that of the reference case

    Optimization of Triple-Pressure Combined-Cycle Power Plants by Generalized Disjunctive Programming and Extrinsic Functions

    Get PDF
    A new mathematical framework for optimal synthesis, design, and operation of triple-pressure steam-reheat combined-cycle power plants (CCPP) is presented. A superstructure-based representation of the process, which embeds a large number of candidate configurations, is first proposed. Then, a generalized disjunctive programming (GDP) mathematical model is derived from it. Series, parallel, and combined series-parallel arrangements of heat exchangers are simultaneously embedded. Extrinsic functions executed outside GAMS from dynamic-link libraries (DLL) are used to estimate the thermodynamic properties of the working fluids. As a main result, improved process configurations with respect to two reported reference cases were found. The total heat transfer areas calculated in this work are by around 15% and 26% lower than those corresponding to the reference cases.This paper contributes to the literature in two ways: (i) with a disjunctive optimization model of natural gas CCPP and the corresponding solution strategy, and (ii) with improved HRSG configurations.Fil: Manassaldi, Juan Ignacio. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Mussati, Miguel Ceferino. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Scenna, Nicolas Jose. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Mussati, Sergio Fabian. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentin

    Optimization of a multi-generation power, desalination, refrigeration and heating system

    Get PDF
    The optimization of a multi-generation system which represents the integrated dual-purpose desalination plant and a low-scale absorption refrigeration system is addressed. A nonlinear mathematical programming optimization model that integrates a natural gas combined-cycle, a multi-effect distillation desalination plant, a series flow double-effect water-lithium bromide absorption refrigeration system, and a water heater, is developed based on first-principle models. The model is implemented in General Algebraic Modelling System and a generalized gradient-based optimization algorithm is used. Given design specifications for electricity generation (around 37 MW), freshwater production (100 kg/s), refrigeration capacity (2 MW), and thermal load for heating (around 0.7 MW of hot water), the integrated system is optimized by minimizing two objective functions by single-objective optimization: total heat transfer area and total annual cost. As a result, minimum total heat transfer area values of 39148 m2, 36002 m2, and 35161 m2 are obtained when 4, 5, and 6 distillation effects were considered in the multi-effect distillation system, respectively. Also, a minimum annual cost of around 24 MM$/yr. is obtained for 5 distillation effects. The influence of the number of effects in the multi-effect distillation subsystem on the optimal solutions is analyzed. Cost-effective optimal solutions are developed for the studied multi-generation system.Fil: Pietrasanta, Ariana Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Mussati, Sergio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Morosuk, Tatiana. Technishe Universitat Berlin; AlemaniaFil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentin

    Process optimization and revamping of combined-cycle heat and power plants integrated with thermal desalination processes

    Get PDF
    Optimal revamping, sizing, and operation of an existing gas-turbine combined-cycle dual-purpose power/desalination plant – simultaneous electricity and freshwater generation – which operates with a heat recovery steam generation with one-pressure level (1P-HRSG) and a multi-stage flash desalination process, is addressed. The sizes and configurations of the gas turbine and desalination unit are kept the same as in the existing plant through the study. However, the 1P-HRSG is conveniently extended to two- or three-pressure levels with different exchanger arrangements, including steam reheating. To this end, a superstructure-based representation of the HRSG simultaneously embedding several candidate structures was proposed and a mixed-integer nonlinear programming model was derived from it. One revamping case consisted in maximizing the ratio between the freshwater production rate and the heat transfer area of HRSG, keeping unchanged the electricity generation rate (around 73 MW). It was found that the inclusion of a 3P-HRSG resulted in an increase of 13.782 kg⋅s−1 in the freshwater production, requiring 22753 m2 of heat transfer area less in the HRSG. Another revamping case consisted in maximizing the profit, contemplating the possibility to sell extra amounts of electricity and freshwater. Sale prices, for which producing extra electricity and freshwater is beneficial, were determined.Fil: Manassaldi, Juan Ignacio. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Mussati, Miguel Ceferino. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Scenna, Nicolas Jose. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Morosuk, Tatiana. Technishe Universitat Berlin; AlemaniaFil: Mussati, Sergio Fabian. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentin

    Optimization of a multi-generation power, desalination, refrigeration and heating system

    Get PDF
    The optimization of a multi-generation system which represents the integrated dual-purpose desalination plant and a low-scale absorption refrigeration system is addressed. A nonlinear mathematical programming optimization model that integrates a natural gas combined-cycle, a multi-effect distillation desalination plant, a series flow double-effect water-lithium bromide absorption refrigeration system, and a water heater, is developed based on first-principle models. The model is implemented in General Algebraic Modelling System and a generalized gradient-based optimization algorithm is used. Given design specifications for electricity generation (around 37 MW), freshwater production (100 kg/s), refrigeration capacity (2 MW), and thermal load for heating (around 0.7 MW of hot water), the integrated system is optimized by minimizing two objective functions by single-objective optimization: total heat transfer area and total annual cost. As a result, minimum total heat transfer area values of 39148 m2, 36002 m2, and 35161 m2 are obtained when 4, 5, and 6 distillation effects were considered in the multi-effect distillation system, respectively. Also, a minimum annual cost of around 24 MM$/yr. is obtained for 5 distillation effects. The influence of the number of effects in the multi-effect distillation subsystem on the optimal solutions is analyzed. Cost-effective optimal solutions are developed for the studied multi-generation system.Fil: Pietrasanta, Ariana Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Mussati, Sergio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Morosuk, Tatiana. Technishe Universitat Berlin; AlemaniaFil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentin

    Optimal design of a two-stage membrane system for hydrogen separation in refining processes

    Get PDF
    This paper fits into the process system engineering field by addressing the optimization of a two-stage membrane system for H2 separation in refinery processes. To this end, a nonlinear mathematical programming (NLP) model is developed to simultaneously optimize the size of each membrane stage (membrane area, heat transfer area, and installed power for compressors and vacuum pumps) and operating conditions (flow rates, pressures, temperatures, and compositions) to achieve desired target levels of H2 product purity and H2 recovery at a minimum total annual cost. Optimal configuration and process design are obtained from a model which embeds different operating modes and process configurations. For instance, the following candidate ways to create the driving force across the membrane are embedded: (a) compression of both feed and/or permeate streams, or (b) vacuum application in permeate streams, or (c) a combination of (a) and (b). In addition, the potential selection of an expansion turbine to recover energy from the retentate stream (energy recovery system) is also embedded. For a H2 product purity of 0.90 and H2 recovery of 90%, a minimum total annual cost of 1.764 M$·year-1 was obtained for treating 100 kmol·h-1 with 0.18, 0.16, 0.62, and 0.04 mole fraction of H2, CO, N2, CO2, respectively. The optimal solution selected a combination of compression and vacuum to create the driving force and removed the expansion turbine. Afterwards, this optimal solution was compared in terms of costs, process-unit sizes, and operating conditions to the following two sub-optimal solutions: (i) no vacuum in permeate stream is applied, and (ii) the expansion turbine is included into the process. The comparison showed that the latter (ii) has the highest total annual cost (TAC) value, which is around 7% higher than the former (i) and 24% higher than the found optimal solution. Finally, a sensitivity analysis to investigate the influence of the desired H2 product purity and H2 recovery is presented. Opposite cost-based trade-offs between total membrane area and total electric power were observed with the variations of these two model parameters. This paper contributes a valuable decision-support tool in the process system engineering field for designing, simulating, and optimizing membrane-based systems for H2 separation in a particular industrial case; and the presented optimization results provide useful guidelines to assist in selecting the optimal configuration and operating mode.Fil: Arias, Ana Marisa. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Mores, Patricia Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; ArgentinaFil: Scenna, Nicolas Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; ArgentinaFil: Caballero, José A.. Universidad de Alicante; EspañaFil: Mussati, Sergio Fabian. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentin

    Optimización en tiempo real con disyunciones lógicas: aplicación a sistemas de calor y potencia

    Get PDF
    La Optimización en Tiempo Real (RTO) permite operar en cercanías del óptimo económico de una planta, respetando restricciones y respondiendo a cambios en el proceso. La adaptación con términos modificadores de las restricciones y los gradientes corrige eficientemente los errores estructurales de los modelos de RTO. Este trabajo propone el uso de RTO incluyendo disyunciones lógicas en el problema de optimización, y plantea una estrategia de adaptación con modificadores para este problema. La estrategia se muestra a través de un caso de estudio que consiste en un sistema de generación de vapor y potencia. Los resultados obtenidos muestran la validez de la estrategia sugerida y la utilidad de incluir variables discretas o disyunciones en los sistemas de RTO.Fil: Serralunga, Fernán José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); ArgentinaFil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); ArgentinaFil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentin

    Model Adaptation for Real-Time Optimization in Energy Systems

    Get PDF
    Real-time optimization (RTO) is widely used in industry to operate processes close to their maximum performance. The models used for RTO need to be adapted using real-time data to ensure feasibility of the model optimal inputs and convergence to the real plant optimal point. Heat and power systems are suitable for being optimized in real-time because of their fast dynamics and the benefits achievable by reacting to changes in power prices and steam demand. This work proposes a modifier adaptation strategy that exploits the structure of certain problems to make the adaptation faster and more reliable, which is proven to be particularly useful for heat and power systems. The adaptation is performed in the equations that predict efficiencies or performance of unit operations. By identifying the variables that modify each performance factor, the number of data sets needed for gradient correction is reduced. This makes the proposed strategy suitable for real-time optimization of processes with a large number of inputs. Two alternatives are proposed to implement the approach: gradient calculation by finite differences and quadratic regression using current and past data. The features and behavior of this approach are shown through two case studies: (i) a simple model with three processes, and (ii) a heat and power system of a sugar and ethanol plant. A comparison with other existent approaches shows a better performance in terms of operating cost and sensitivity to noise.Fil: Serralunga, Fernán José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina;Fil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina;Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina

    A novel framework for integrating real-time optimization and optimal scheduling : Application to heat and power systems

    Get PDF
    The optimization of heat and power systems operation is a complex task that involves continuous and discrete variables, operating and environmental constraints, uncertain prices and demands and transition constraints for startups or shutdowns. This work proposes a novel methodology for integrating scheduling optimization and real-time optimization (RTO) in order to face and solve such optimization problem. In a first stage, an offline optimization finds a scheduling for the whole horizon under study, which sets the startups and shutdowns of pieces of equipment with long transition times. A second stage solves a multiperiod RTO, which corrects the forecasts and adapts the model before optimiz-ing the process. Although the proposed methodology is illustrated through a case study consisting in a heat and power system, it can be generalized to other systems and processes. The obtained results show significant improvements in comparison with applying the results of a single offline scheduling optimization.Sociedad Argentina de Informática e Investigación Operativa (SADIO
    corecore