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ABSTRACT: Real-time optimization (RTO) is widely used in industry to operate processes close to their maximum
performance. The models used for RTO need to be adapted using real-time data to ensure feasibility of the model optimal inputs
and convergence to the real plant optimal point. Heat and power systems are suitable for being optimized in real-time because of
their fast dynamics and the benefits achievable by reacting to changes in power prices and steam demand. This work proposes a
modifier adaptation strategy that exploits the structure of certain problems to make the adaptation faster and more reliable, which
is proven to be particularly useful for heat and power systems. The adaptation is performed in the equations that predict
efficiencies or performance of unit operations. By identifying the variables that modify each performance factor, the number of
data sets needed for gradient correction is reduced. This makes the proposed strategy suitable for real-time optimization of
processes with a large number of inputs. Two alternatives are proposed to implement the approach: gradient calculation by finite
differences and quadratic regression using current and past data. The features and behavior of this approach are shown through
two case studies: (i) a simple model with three processes, and (ii) a heat and power system of a sugar and ethanol plant. A
comparison with other existent approaches shows a better performance in terms of operating cost and sensitivity to noise.

1. INTRODUCTION

A main concern in decision-making on industrial processes is to
operate a plant at its maximum performance under changing
scenarios. Nowadays, the availability of real-time process
measurements and the improvements in processor capabilities
encourage the use of computer-aided techniques to operate as
close as possible to the desired optimal performance. Real-time
optimization (RTO) exploits the plant’s degrees of freedom to
find the inputs that maximize a selected performance index, while
satisfying operation, environmental, and safety constraints, and
reacting to process, ambient, and prices disturbances. The
process performance is optimized for a steady-state behavior, and
the results can be sent as targets to a predictive control system or
as set points to conventional control.
Figure 1 illustrates a traditional hierarchical structure for

decision-making in industrial processes. In this scheme, RTO is
placed as a link between scheduling (with a scale of days or
weeks) and advanced control, normally model predictive control

(MPC) (with scale of minutes). Recent publications address the
integration of RTO andMPC in a single layer by adding a steady-
state final cost in the MPC objective function1,2 or by solving
rigorously a dynamic real-time optimization problem
(DRTO).3,4

The state of the art in RTO industrial applications has been
investigated by Darby et al.5 and Mansour and Ellis.6 They
identify five steps in the process: (i) steady-state detection, (ii)
data validation, (iii) parameter adaptation, (iv) optimization, and
(v) decision to update or not the settings of the advanced control
system with the solution found in step iv. Data validation may
include a data reconciliation and gross error detection step.
RTO optimization approaches are generally based on models.

This means that the maximization of the process performance is
calculated for a model of the process. Model-based RTO
approaches require dealing with plant-model mismatch, which
can lead to infeasibilities as well as to suboptimal solutions. The
mismatch can be parametric or structural: in the former, the
estimated parameter values are not the real ones; in the latter, the
proposed model functions do not represent the real plant
behavior even if the optimal parameters values are found. None
of them can be avoided in industrial applications.
Different adaptation strategies using online process data are

used to partially overcome this problem.7 The traditional two-step
approach8 solves first a parameter estimation optimization
problem, and then uses the updated parameters on the
performance optimization step. Upon convergence and with a
certain number of parameters, this approach guarantees
feasibility, but it requires a larger number of parameters to
reach the real plant optimum.
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Figure 1. Decision-making hierarchy in an industrial plant.
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Modif ier adaptation approaches9 replace the first optimization
step of the two-step approach with the calculation of correction
terms (modif iers). They can include biasing terms for constraints
(constraint-value modif iers) and gradient correction terms for
constraints and objective functions (constraint-gradient and cost-
gradient modif iers, respectively). The modifiers are generally
filtered using past and current estimations in order to reduce the
effect of measurements noise. The quoted references show that,
upon convergence, these methods reach a Karush-Kuhn-Tucker
point of the real plant.
A third adaptation type, called direct input, does not solve

optimization problems, but emulates a control system using as
set points selected variables that guarantee the optimum. For
example, NCO tracking10,11 (where NCO stands for necessary
conditions for optimality) defines as set points of the RTO
system the Karush−Kuhn−Tucker conditions.
Uncertainty in measurements and results can also lead to

infeasibilities. This problem is generally approached by backing-
off the constraints (i.e., reducing the feasible region by defining
more conservative constraints). Stochastic RTO approaches
have also been developed.12

The results provided by the RTO scheme should be analyzed
to decide if they will be implemented or not.13 The decision is
based on a statistical analysis of the calculated inputs in order to
avoid unnecessary changes caused by the inherent variability of
the measurements.
Model-free RTO approaches are described in the literature.14

They need to make plant perturbations in several directions in
order to determine experimentally the objective function
gradient to calculate changes in a descent (or ascent) direction.
Heat and power systems often present some characteristics

that make RTO a suitable alternative for operating them in an
optimal way. Along the day, utilities systems face changes in
steam demand, price of electric power (which can even change
every few minutes according to grid demands in deregulated
markets), and boiler and turbine efficiencies. The relatively fast
dynamics of steam generation systems allow performing the
optimization with a frequency on the order of minutes instead of
the typical hours. Steady-state models can be used for
optimization because of these fast dynamics. In addition, this
behavior allows implementing a RTO scheme without the need
of model predictive control to apply the solutions.
In this work, a modifier adaptation RTO scheme is proposed.

It includes a strategy for correcting model gradients, which aims
to reduce the dimension of the gradient calculation problem. It
exploits a characteristic of many energy systems: all mass and
energy balances can be modeled rigorously, without the need of
empirical parameters; therefore, the equations to calculate them
are free of structural and parametric mismatch. All the
uncertainties are included in a subset of the model equations,
which predicts the efficiency and performance of unit operations.
Moreover, it is possible to identify which variables affect the
performance of each process unit in order to reduce the number
of data sets required to calculate real gradients (i.e., the number
of past RTO cycles that are necessary to estimate the gradients of
the current cycle). Multiple data sets are used for adapting
modifiers. Yip and Marlin15 proposed using multiple data sets as
a way to increase the number of parameters to be adapted, while
this work uses them to overcome structural mismatch and to
reach the real plant optimal point.
Section 2 summarizes the current state of the art in modifier

adaptation RTO and gradient correctionmethods. The proposed
adaptation approach is presented in section 3. The application of

the proposed RTO scheme is shown and discussed in section 4
through two case studies: (1) a simplified generic process and (2)
a heat and power system of a sugar and ethanol plant.

2. MODEL ADAPTATION AND GRADIENT
CORRECTION METHODS
2.1. Model Adaptation Strategies. The aim of real-time

optimization is to find an input vector u* that solves the
following optimization problem:
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where u and yp are the vectors of process inputs and outputs,
respectively; Qp is the real process operation cost (a scalar
function); fp is the equations set that represents the real plant
behavior; g is the process constraints set; and ul and uu are the
lower and upper bounds sets on the inputs, respectively.
As the actual process behavior fp(u) is unknown, the outputs

are estimated from a process model:16
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where y is the vector of the estimated outputs; x are the state
variables; f is the process model equations set; and α and β are
the vectors of fixed and adjustable parameters, respectively.
Hereafter, model 2 will be denoted by the simplified expression y
= y(u,α,β), and it will be implicitly included in cost and
constraint functions as Q(u,α,β) and g(u,α,β), respectively.
The two-step approach updates the adjustable parameters β in

a first stage, and then uses these values in the cost optimization
step.17 In general, the first step requires solving the following
minimization problem:
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where ym is the vector of the measured outputs. The resulting
optimal parameter values β* are then fixed, and used to find an
input vector u* that minimizes the cost Q:
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Because of the unavoidable structural mismatch, it cannot be
guaranteed that the previous steps lead to a point matching the
plant KKT conditions. To do that, additional parameters for
correcting the gradient should be added to the model. The
ISOPE algorithm18 (Integrated System Optimization and
Parameter Estimation) corrects the objective function as follows:

α β λ= * − ·Q Q u u( , , )m
T

(5)
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where the vector of modifiers λ is calculated as19
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Modifier adaptation does not adjust model parameters. Instead,
it guarantees feasibility and optimality upon convergence by
solving the following problem at each RTO cycle k:16
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Prior to the optimization step, the modifiers (i.e., correction
factors for gradients and constraint values) are calculated:
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where ng is the number of inequality constraints to be adapted.
The calculated modifiers can be affected by process measure-

ments noise, which can increase results variability. Furthermore,
if the modifiers are applied directly from eq 8 the correction
could be excessive and affect the convergence of the RTO
algorithm.9 To diminish these undesired effects, an exponential
filter can be applied to the calculated adaptation parameters.7,20

Defining the vector of all constraints and gradients as C =
(g1...,gng,∂g1/∂u,...,∂gng/∂u,∂Q/∂u), and the vector of all modifiers
Λ =(ε1

G,...,εng
G ,(λ1

G)T,...(λng
G )T,(λQ)T), the expression for the filtered

modifiers in RTO cycle k can be stated as

α βΛ = − ·Λ + · −−I K K C C u: ( ) ( ( , , ))k k p k1 , (9)

where Cp,k and C(u,α,β) are, respectively, the real plant and
model values for constraints and gradients, and K is a filtering
matrix (in general, a diagonal matrix whose elements are between
0 and 1).
2.2. Gradient Correction Methods. ISOPE and modifier

adaptation algorithms require an experimental determination of
gradients, which is not a trivial task, and several techniques have
been developed. Among them, the following ones can be
mentioned:21,22

Finite Forward Differences (FFD). It requires small
perturbations in the input variables around each steady state to
calculate each derivative as follows:
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In large (i.e., with a large number of inputs) or slow processes,
this technique could be difficult to implement because of the time
needed to perform the perturbations and to reach each steady
state. Despite these limitations, it was proposed to use FFD to
initialize gradient calculations until enough data is available for a

dual control strategy.23 Alternatively, a sinusoidal excitation is
proposed.

Dual Control. The gradient is calculated based on previous
steady-state data. A linear estimation of the derivatives for a
property y can be done by solving the following equation system:
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where nu is the number of inputs.
Instead of updating the gradients as eq 11, it was also proposed

to update cost and constraint gradient modifiers:24
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where ε and λ are the modifier and the gradient modifier of a
constraint or of the cost.
A difficulty may arise from the fact that the equations can be

linearly dependent or the system ill-conditioned. To avoid this, a
constraint has to be added to the RTO problem so that the new
point will not cause ill-conditioning. This can be done by limiting
the condition number of the equation system that the new input
will produce. Analytical expressions for upper bounds on the
errors due to truncation and noise were proposed byMarchetti et
al.9 Adding these new constraints proved to be more effective
than limiting the condition number. Changes in measured or
unmeasured disturbance variables can make inconsistent the
gradient estimation until enough data are collected to make a
new estimation with the actual conditions. This problem
becomes critical when the number of inputs increases.
Alternatively, the output derivative matrix can be estimated by

using a Broyden updating algorithm:
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This matrix has to be initialized at the beginning of the operation.
This recursive method avoids the ill-conditioning problems that
can appear in eqs 11 and 12, updating the gradient only in the
direction of vector (uk− uk−1). However, it also needs additional
constraints to limit truncation and noise errors, and to force the
system to update the gradient in all directions of the inputs
space.25

Bunin et al.26,27 propose in recent works the use of a weighted
least-squares regression for gradient estimation using past data.
They also suggest the use of Lipchitz constants to bind the
estimates; this includes fixing a partial derivative to 0 (very small
values in practice) if an input is known not to influence a
gradient. The use of a least-squares regression and the use of the
plant knowledge to ignore the estimation of partial derivatives
that are known to be zero were also approached by the authors of
this paper.28,29 These ideas will be detailed in section 3.

Model-Based Approaches. Among the model-based ap-
proaches, the following ones can be mentioned: parameter
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estimation-gradient calculation and neighboring extremals, self-
optimizing control. They estimate the gradient on the basis of
parameters variations using derivatives of the proposed model.
Therefore, they cannot guarantee convergence under structural
mismatch.
Dynamic Identification. The gradients of the steady-state

model are identified during the transient between RTO runs
using a dynamic (linear or nonlinear) model.

3. MODEL ADAPTATION USING PERFORMANCE
EQUATIONS

3.1. Description of the Method. For certain process types,
all structural and parametric mismatches can be grouped into a
subset of the model equations, which are called hereafter
performance equations. These equations, which can be used to
predict reaction rates, boiler or turbine efficiencies, or heat
exchange coefficients, among others, are formulated using
experimental data, and can be corrected using online measure-
ments. The rest of the model equations, which include mass,
energy, and entropy balances, can be considered as structurally
correct, although they can include, as a parameter, the result of a
performance equation (for example, a boiler energy balance can
include the efficiency calculated by the efficiency equation).
The real-time optimization problem to solve can be stated as
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where y are the measured process outputs, x are the state
variables, u are the process inputs (which can also bemeasured), f
is the process model (mass, energy and entropy balances), h is
the relation between outputs and inputs and states, and g are the
inequality constraints. η are performance or efficiency factors,
whose functionality with process inputs is estimated by an
approximate model pm(u). All the structural and parametric
uncertainty in the model is concentrated in this model pm. It is
assumed that the submodel f2 allows acquisition of the
performance factors η if y and u are known.
Moreover, each performance factor ηj can be expressed as a

function of new variables vj, which are in turn obtained as a
function of u:

η = =p j njv u( ( )) 1, 2, ...,j mj j (15)

where nj is the number of performance equations in the system.
The following examples illustrate some of the possible forms

or “structures” that variables vj can take for an input vector u =
(u1, u2, u3)

T:

•v is the same input vector u:

η = =p u u u v u( , , )m1 1 1 2 3 1

•v is a subset of u:

η = =p u u u uv( , ) ( , )m2 2 1 3 2 1 3
T

η = =p u v u( )m3 3 2 3 2

•v is a linear combination of u: v(u) = P·u, where P is an nv × nu
matrix; nv is the dimension of v. (This is a generalization of the
two previous cases):

η = − = −p u u u u u uv( , ) ( , )m4 4 1 2 3 4 1 2 3
T

•v is a continuous function of u:

η = · = ·p u u v u u( )m5 5 1 3 5 1 3

In the systems studied in this work, the dimension of the vectors
vj that affect each performance equation is lower than the
dimension of the input vector u. This is a typical situation in
process systems formed by networks of unit operations (such as
heat and power systems); the performance of each subprocess is
not affected by other processes operating in parallel or
downstream, but only by the inlet conditions to the subprocess
itself.
If this happens, the gradient correction terms can be calculated

in terms of vj instead of u. Therefore, the dimension of gradient
estimation problems can be reduced with respect to eq 11 and 12
as fewer data sets (i.e., data from fewer RTO cycles) are necessary
to estimate a gradient correction term for each equation.
Furthermore, it avoids the experimental calculation of the
gradient in directions of the space of inputs in which the
directional derivative is known to be zero.
The model adaptation problem uses the available measure-

ments to perform the necessary corrections. Having all outputs y
measured and a proper model structure, this adaptation can be
decomposed in three steps: (1) data reconciliation, (2)
performance factors calculation, and (3) performance equations
adaptation.

Step 1: Data Reconciliation. The reconciled values (yk, uk)
for the RTO cycle k are obtained from the measured values (ymk,
umk) as follows:
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where A and B are the variance-covariance matrices for outputs
and inputs, respectively.20,30

Step 2: Performance Factors Calculation. Using the optimal
variables values computed from eq 16, the equation system

η =f x u( , , ) 02 (17)

is solved to obtain ηk. Alternatively, the determination of the
performance factors can be combined with the data reconcilia-
tion step, solving them simultaneously.

Step 3: Performance Equations Adaptation. The perform-
ance equations can be adapted for each RTO cycle k by
introducing amodifier adaptation structure (note that in this case
it is applied to performance equations instead of cost and
constraints):28
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λη β= + + · − =p j njv v v( ) ( ) 1, 2, ...,j mj j jk jk j kj
T

, (18)

where βjk = ηjk− pmj(vj,k) is the constraint modifier (following the
biasing update structure proposed by Forbes and Marlin),31 and
λjk = ▽vηj|vj = vj,k − ▽vpm,j|vj = vj,k is the gradient modifier for
performance indicator ηj.
In this case, the gradient can be estimated using data from the

current and previous RTO cycles:
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where Vj[vj,k − vj,k−1 vj,k − vj,k−2 ... vj,k − vj,k−nij], and nij is the
dimension of vectors vj and▽vηj. This approach is useful if ni is
close to 1 and lower than nu, thus allowing a reduction of the
dimension of the gradient estimation problem.
All gradients with respect to the independent variables u can

be calculated following the chain rule:
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If all the structural plant-model mismatch can be included into
these performance equations and these equations are a function
of the proposed variables v, all cost and plant gradients can be
known by calculating the parameters λj, j = 1, ..., nj. Therefore,
upon convergence, a KKT point of the adaptedmodel will also be
a plant KKT point.
3.2. Implementation of the Equations Correction.

Alternative 1: Correction + Exponential Filter. The model
can be adapted using eqs 18 and 19. An exponential filter is
applied to the calculated adaptation parameters:

β β β β
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where K are filtering matrices (diagonal matrices28 whose
elements are between 0 and 1). Alternatively, a moving average
filtering can be used for parameters that are known to change
slowly.
Maximum and minimum values can be defined for modifiers

λjk to limit the effect of noise. However, if the model performance
equations have a significant mismatch, setting such maximum
and minimum values will not guarantee the convergence to the
real plant optimum.
A dual control strategy similar to the one proposed by

Marchetti et al.9 can also be applied. It defines two feasible
regions for the optimization problem on each RTO cycle k,which
guarantee an upper bound in the error due to truncation and
noise in the gradient estimation for cycle k + 1. Otherwise,
constraints based on the condition number of matrices Vj can be
added.32

The case studies presented in section 4 use a simplified
strategy that adds new constraints that set a maximal value δ to
the changes in process inputs u; that is,

δ|| − || ≤u uk (22)

As this simplified strategy does not guarantee that the gradient
calculation problem will be well-conditioned, an update criterion
is defined for each parameter λj: they will not be updated if the
changes on the corresponding variables vj are smaller than a
predefined threshold.

Alternative 2: Quadratic Regression. Efficiency ηj can also be
adapted using a generic function γj:

η γ= + =h j nju v u( ) ( ( )) 1, 2, ...j mj k jk j (23)

The adaptation term γjk is obtained by regression using a moving
horizon. For example, a quadratic function can be proposed; its
coefficients are updated by least-squares weighted quadratic
regression:
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(24)

The inclusion of the quadratic terms Cjk adds more degrees of
freedom to the modifier adaptation scheme.27 They are not
strictly necessary to obtain the desired property of matching
plant and model KKT conditions upon convergence. However,
they may be useful to provide a better estimation of the gradients
at the current cycle k if the correction term βji is not linear with vji
(i.e., if the gradient is not constant). Furthermore, by including
extra degrees of freedom, the approach can improve the fitting of
the real functionality of the efficiency terms ηj, which will result in
a better prediction of these terms in the economic optimization
problem.
However, the use of these terms requires more information

from the data than a linear estimation. Theymust not be included
in the optimization problem (24) in the first RTO cycles when
the system is initialized, as the problem would be underspecified
and the parameters can take any value. In addition, the prediction
of extrapolated values (i.e., values outside the range determined
by the N data sets of problem (24)) can be inaccurate if the
functionality of the correction term is not quadratic. To
overcome this problem, the authors suggest using conservative
values for the upper and lower limits Cj

U and Cj
L (see examples in

section 4).
The weights wi can be adopted following different criteria. In

the case studies in section 4, the criterion is to adopt a weight of 1
to data of cycle k. This weight decays for older data (the older the
data, the lower the weight). This strategy penalizes the
probability of low frequency disturbances that can make data
sets from previous cycles not useful for the current gradient
estimation. At the same time, if the system is converging to the
optimum, the data from themost recent cycles will probably be at
a lower distance to the current point. Therefore, they are
assigned a higher weight (in comparison with older data), as they
provide more information for the local gradient calculation.
Other authors suggest a weight based on the distance from the
current point and on the noise level.26
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Although the polynomial regression approach does not require
additional constraints to avoid ill-conditioning of the estimation
problem,26 the data set that is used for solving the problem (24)
may not contain sufficient information for a valid estimation of all
the proposed parameters. This can be particularly problematic
when the RTO scheme converges to a point, because if no
disturbances are present the system will remain in the
convergence point (or within a small region around it) for
several RTO cycles, and the quality of the calculated parameters
will decrease. If necessary, a check on the quality of the estimates
can be performed, and plant experiments can be forced to
improve it.33 In the case studies of section 4, this validation was
not implemented for the sake of simplicity; nevertheless, the
proposed approach showed a good performance.
Yip and Marlin15 have suggested a structure similar to eq 24.

The difference lies in that they propose a simultaneous data
reconciliation and parameter estimation, which is solved for
several data sets at the same time. In this paper, a decomposition
of the problem is proposed, which leads to a faster computation
and may be useful for certain types of processes, like the steam
and power system analyzed in Case Study II. In addition, the
approach here proposed seeks to obtain the real optimal plant
cost by matching the KKT conditions, while the aforementioned
authors have only suggested a procedure to adjust parameters
that cannot be obtained using a single data set.
Figure 2 shows a diagram illustrating the proposed RTO

structure. As pointed out in the Introduction section, it includes a
previous steady-state detection step, which is only mentioned
briefly in this work. There exists a vast literature addressing this
issue.34−36

4. CASE STUDIES

In this section, two case studies are presented and discussed to
show the behavior and performance of the proposed structures.
First, the main methodological features of the proposed RTO
scheme are explained and highlighted through a very simple case
(Case Study I). Then, a more complex and realistic case study is
considered, which consists of a heat and power system of a sugar
and ethanol facility (Case Study II).
The methodology followed to analyze the RTO system

performance is the same as used in other publications in this
area.37 Two models are used: one model, called real plant, is
assumed to represent exactly the system to be optimized. It is
used to simulate the plant’s steady state and to evaluate the real
value of the objective function. A second model, called RTO

model, has a structural and parametric mismatch with respect to
the real plant. A set of the real plant results, called measurements,
is used to adapt the RTO model. The optimal calculated inputs
are used in the real plant, which allows evaluation of the real cost
and acquisition of new measurements for the next RTO cycle.
To evaluate and compare the performance of the proposed

and other RTO adaptation approaches, the Extended Design
Cost criterion was used.38 It evaluates the total loss of profit of a
given RTO approach, the real optimal plant cost being the
reference used to calculate the maximum profit that can be
achieved by optimization.

4.1. Case Study I. A Simple System. A scheme of the
system is shown in Figure 3. The process consists of three unit

operations, with two degrees of freedom (F1 and F2). Each unit
operation is characterized by efficiency ηi, which is known to be a
function of the corresponding flow Fi.
Table 1 shows the efficiency equations for each operation.
The measurements from the real plant are F1, F2, Q1, Q2, and

Q3. As there is no redundancy in the measurements, there is no
need of a data reconciliation step. In a RTO cycle k, the steps for
adaptation/optimization are as follows.

1. Balances.

= −F F Fk k k3, 1, 2, (25)

2. Performance Factors Calculations.

η = =
Q

F
j, 1, 2, 3j k

j k

j k
,

,

, (26)

Alternative 1:

Figure 2. Scheme of the proposed RTO approach.

Figure 3. System modeled in Case Study I
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3.a. Model Adaptation.
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4.a. Cost Minimization.
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Alternative 2:

3.b. Model Adaptation.
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4.b. Cost Minimization:
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5. Apply Optimization Results and Wait for Next Steady
State: k:= k + 1. The regression step (3b) is implemented
without the quadratic coefficients cj from k = 0 to k = 7. For k≥ 7,
these coefficients cj are included.
Table 2 shows the values of the parameters used in the RTO

scheme.

Alternatives 1 and 2 were evaluated for 40 RTO cycles. Each
alternative is run under two scenarios: in the first one, no noise is
present in the measurements; in the second one, both flows F1
and F2 and outputs Q1, Q2, and Q3 are perturbed with Gaussian
noise of mean 0 and standard deviation 0.1.
The results are compared with an RTO approach without

gradient adaptation (i.e., Alternative 1 with λ = 0), and with a
modifier adaptation algorithm where the gradients with respect
to inputs F1 and F2 are calculated for the three outputs Q1, Q2,
and Q3. A Broyden update is used to calculate experimental
gradients in this implementation (called hereafter Broyden-MA).
To control gradient variance and offset, additional constraints
must be included in the Broyden-MA approach.25 The
constraints used in this implementation are

− + − ≤F F F F( ) ( ) 1k k1 1,
2

2 2,
2

(31)

α α α
−

−
≥ · ·

⎛
⎝
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⎞
⎠
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⎞
⎠
⎟⎟

F F

F F
abs 0.5k

k

k
k k

T 1 1,

2 2,

T

(32)

Table 1. Performance Equations for Case Study I

efficiency real plant RTO model

η1 10000/(85 − 20·exp(−(F1 − 80)/190) 10000/(58 − 0.08·F1)
η2 65 − 0.006·(F2 − 80)2 − 24/F2 65 − 0.06·F2
η3 80 − 0.006·(F3 − 35)2 − 12/F3 50 + 0.04·F3

Table 2. Parameters Used in Case Study 1

parameter value parameter value

FL [80, 55, 20]T bU [7, 7, 7]T

FU [120, 90, 50]T cL [−0.1, −0.1, −0.1]T

f [0.7, 0.7, 0.7]T cU [0.1, 0.1, 0.1]T

N min(k, 10) ρ 5
wi 0.9k−i δ 0.3
aL [−500, −500, −500]T M 3
aU [500, 500, 500]T λL [-0.9, −0.9, −0.9]T

bL [−7, −7, −7]T λU [0.9, 0.9, 0.9]T
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where αk
T = ((−F2,k + F2,k−1),(F1,k − F1,k−1)), that is, a vector

normal to the two last inputs.
Constraint 32 generates two feasible regions as usual in all dual

control modifier adaptation approaches. The optimization must
be solved for each feasible region, and the best of the two
solutions is selected and sent to the control system to be applied
in the plant. The exponential filter for updating all gradient
modifiers in Broyden-MA was selected as 0.6.
The model and all the mentioned approaches were

implemented in General Algebraic Modeling System
(GAMS).39 The optimization problems were solved using
CONOPT 3.40

The initial point chosen for the study was [F1,0 = 90, F2,0 = 60].
The objective function value computed at this point is 5907.75.
The real optimal point is obtained by solving the optimization
problem of the real plant; the computed optimal solution is [F1 =
105.59, F2 = 71.09], which corresponds to a cost of 5520.809.
The system is initialized with two experimentation steps in

order to allow gradient estimations. They correspond to cycles 1
and 2: [F1,1 = 90.5, F2,1 = 60], [F1,2 = 90.5, F2,2 = 60.5]. In the last
cycles (k >15) of Alternative 1, as the model approaches the
optimum, the changes can be too small to update gradients (see
eq 27). To overcome this situation, if the gradient of a
performance equation was not updated in cycle k, then an
additional constraint is added in cycle k + 1:

≥ − ·F F Q F1 sign(d /d )i i k i, (33)

Equation 33 indicates that the direction chosen for exper-
imentation is a descent direction for the objective function,
according to the model and the corrections made.
Figures 4, 5, and 6 show the evolution for Alternative 1,

Alternative 2, and Broyden-MA approaches, respectively. All

cases are compared with the traditional approach (i.e., without
gradient correction). It can be observed that the traditional
approach leads the plant to an operating point different to the
real optimum. For noise-free cases, Alternatives 1 and 2 converge
to the vicinity of the optimum, while Broyden-MA cannot reach
the real minimum cost in the number of RTO cycles analyzed in

this case. The proposed alternatives also show a better
performance than Broyden-MA when Gaussian noise is
considered. As seen in the figures, Alternative 2 has a slower
convergence to the optimum than Alternative 1, but shows a
smaller variability of the results when it approaches the optimum.
This is a desirable behavior of the system since the changes in the
vicinity of the optimum generate small or negligible benefits (or
even an increase in the operating cost due to the error in gradient
estimation).
Figure 7 plots the real plant cost evolution for all analyzed

adaptation strategies. For this case study, it shows that the
proposed alternatives perform better than the compared
approaches in this case study.
The performance of each RTO approach is evaluated using the

Extended Design Cost (EDC) criterion.38 The lower the EDC is,
the higher is the benefit obtained by the RTO system. The EDC
criterion is formulated as follows:

Figure 4. Alternative 1 evolution (performance equation gradient
correction).

Figure 5. Alternative 2 evolution (performance equation corrected with
quadratic regression).

Figure 6. Broyden-MA evolution.
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whereQr* is the real plant optimal cost andQr,k is real plant cost at
cycle k. T0 and Tf are initial and final times, which correspond to
RTO cycles k0 and kf, respectively. The results are summarized in
Table 3. The EDC is analyzed for the whole set of cycles (i.e.,

from k = 0 to k = 40) and also for the period from k = 5 to k = 40.
The first comparison allows an evaluation of the total loss of
profit of the RTO approach, while the second one analyzes how
the system behaves when the plant is in the vicinity of the
optimum (this is true in the gradient correction approaches;
without gradient correction, the approach converges to other
operating point). The following criterion is considered to set k =
5 in the latter case: at k = 5 for noise-free cases, using both
Alternative 1 and 2, the plant reached a cost differing less than 1%

from the real plant optimal cost. According to this criterion, the
evolution of the system can be divided in two stages: in the first,
the plant cost at cycles k Qr,k is significantly different (i.e., > 1%)
from the optimal cost Qr* ; in the second, the cost is close to the
desired objective function value, and therefore, the cost variation
after each RTO cycle is small. In this second stage, the difference
between the plant cost and the optimal plant cost are due to
gradient estimation errors and data variability.
The relative EDC values presented in Table 3 are calculated by

eq 35:

= ·Relative EDC EDC/EDC 100NA (35)

where EDCNA is the Extended Design Cost if no optimization is
applied to the process.
The Extended Design Cost evaluation shows that Alternatives

1 and 2 outperform the Broyden-MA and traditional strategies.
The difference is more noticeable for k > 5, when the proposed
alternatives have converged to the vicinity of the optimum. As
expected, the traditional no-gradient correction approach
(NGC) shows the worst performance since significant structural
mismatch between the real plant and the RTO model is present
in this case.
Gradient correction makes Broyden-MA perform much better

than NGC. However, it fails to converge to the real plant
optimum in the number of RTO cycles specified in this case. The
reason is that the gradients are calculated with respect to all
process inputs, including those whose partial derivative is 0. In
addition, Alternatives 1 and 2 make use of the process knowledge
to reduce the dimension of the gradient (for example in efficiency
factor η3, whose gradient is calculated as a function of F3 = F1 −
F2, instead of obtaining independently the partial derivatives with
respect to F1 and F2). Therefore, the Broyden-MA implementa-
tion has more sources of potential errors, which cause a slower
convergence.
The choice of the filtering parameter value can be critical to the

performance of the adaptation approach. Figure 8a shows the
variation of the EDCwith the gradient modifier exponential filter
for Alternative 1 and Broyden-MA, as well as the variation of
EDC with the weighting factor wi for Alternative 2 (see Table 2).

Figure 7. Cost evolution for Alternative 1, Alternative 2, Broyden-MA, and no gradient correction.

Table 3. ExtendedDesign Cost for All Studied Scenarios. Case
Study I

EDC from k = 0 to 40 EDC from k = 5 to 40

scenarios absolute relative absolute relative

no action 15477.6 100 13542.9 100
Noise-Free Scenarios

no gradient correction 11244.4 72.65 9453.1 69.80
Broyden-MA 2384.7 15.41 1090.1 8.05
Alternative 1 1402.4 9.06 123.7 0.91
Alternative 2 1426.3 9.22 150 1.11

Gaussian Noise in Data
Broyden-MA 3320.6 21.45 1661.5 12.27
Alternative 1 1969.1 12.72 499.9 3.69
Alternative 2 1898.8 12.27 587.3 4.34
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The noise level is the same as the base case (0.1 for efficiencies
and flows). Each point plotted in Figure 8a is the average value
from 50 runs of the case study (40 RTO cycles each, with the
same starting point for all runs) with random noise generation. It
can be observed that Alternatives 1 and 2 do not show a
significant sensibility to parameter values greater than 0.6. The
results for Broyden-MA suggest an optimal value for the filtering
parameter between 0.6 and 0.8.
The noise level can also impact on the real-time optimization

performance. Figure 8b shows the variation of EDC for each
implementation when the noise level changes. Again, each point
plotted is the average value resulting from 50 runs of the case
study; in this case the filtering parameters are kept constant for
each alternative at the value used in the study. As expected, when
the noise level is increased, all the alternatives show a higher
EDC. For higher noise levels, Alternative 2 performs better than
Alternative 1, while for low noise levels their performances are
similar. Broyden-MA shows a poorer performance for all noise
levels.

4.2. Case Study II. A Heat and Power System for a Sugar
and Ethanol Facility. A model of an energy system for a sugar
and ethanol plant was developed in GAMS and solved using
CONOPT 3. It includes two bagasse boilers, four backpressure
turbines for cane milling, an extraction-condensing steam
turbogenerator, a five-effect evaporator system, and other
steam demands. A diagram of the modeled system is shown in
Figure 9. The model equations are included in the supplied
Supporting Information. A model description can also be found
in Serralunga et al.29 The nomenclature associated with Case
Study II can be found in Table 4.
If the steam header pressures and the syrup final concentration

are fixed, the plant has 6 degrees of freedom. The six inputs
selected to control the plant can be, for instance, TG-1 extraction
flow, TG-1 condensing flow, vapor bleeding flows from effects 1,
2, and 3, and the difference in steam flows between Boiler 1 and
Boiler 2. If modifier adaptation or ISOPE approaches were
implemented in a dual control strategy following the methods
mentioned in section 2, at least six data sets would be necessary
to set the additional constraints to avoid ill-conditioning or to

Figure 8. (a) Extended Design Cost (EDC) vs exponential filter (Alternative 1 and Broyden-MA), and vs weighting factor (Alternative 2). (b) EDC vs
noise level.

Figure 9. Sugar and ethanol heat and power system diagram.
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limit the gradient estimation error. This number can be high
enough to discourage the implementation of the mentioned dual
control strategies, as these constraints can limit in excess the
feasible operating points at each RTO cycle, and plant
disturbances can occur with a frequency higher than 6 RTO
cycles, which can make invalid the past gradient estimations.
Then, the proposed approach based on performance equations is
suggested in this case.
Enthalpy and entropy values for water and steam streams, as

well as saturation temperatures and pressures, are estimated as
Irving and Liley.41 Boiling point elevation (BPE) and heat
capacity (Cp) for syrup are calculated according to Camargo et
al.42 All these equations as well as mass, energy, and entropy
balances are free of error in the analyzed case. The errors in the
model are included in the prediction of boiler efficiencies,
turbogenerator isentropic efficiencies, and evaporation coef-
ficients in each evaporator effect.
Evaporation coefficients are equivalent to heat transfer

coefficients; they indicate the amount of steam produced per
unit of heat transfer area and per degree of temperature
difference between the heating steam and the boiling cane syrup.
The equations used for the RTOmodel prior to correction are of
the type of the Dessin equation.43 The expression for calculating
the real plant evaporation coefficients is intentionally different to
the Dessin equation (see Table 5). While each coefficient is
explicitly a function of temperatures and syrup Brix degrees, the
gradient correction is performed with respect to the live steam
flow used to heat the first evaporator stage. It is assumed that
vapor bleeding is maximized and, therefore, temperatures and
Brix degrees for the optimal configuration can be calculated as a
function of the inlet steam flow.

Turbogenerator second stage efficiency for the real plant is a
function of two variables: stage steam flow and inlet temperature
(which depends on the efficiency of the first stage and the
temperature and pressure of the first stage admission steam).
However, the RTO model and the gradient correction strategy
consider negligible the functionality with temperature, correcting
the gradient only with respect to the steam flow.
Model and real plant equations are shown in Table 5.
The objective function accounts for a fuel cost assigned to

bagasse burnt, and the income due to electric power export.
Four scenarios are studied. The first one, which is used to

check the convergence of the proposed approach to the real plant
optimum, considers a constant steam demand for distillation and
other uses. In the second, steam demand can vary between two
RTO cycles. In the period between two cycles, the change in
demand is managed by adjusting steam production in boilers 1
and 2, keeping constant the calculated optimal difference
between these two steam flows. In the third scenario, electric
power price can change every four cycles. The fourth scenario
combines the changes in demand and power price of scenarios 2
and 3, respectively.
The “measured” data and the variance of each measured

variable are listed in Table 6. The subindexes in flows and

temperatures indicate the stream number, according to Figure 9.
As bagasse mass flow to boilers is difficult to be measured with
precision,44 boiler efficiencies should be calculated through an
indirect method, based on air and flue gas temperatures, CO2 and
O2 content in flue gas, and an estimation of losses due to
radiation and unburnt bagasse. The variances for boiler
efficiencies shown in Table 6 correspond to the accuracy of
that whole indirect calculation.
As there exists redundancy in measurements, data reconcilia-

tion is performed. The performance factors indicated in Table 5
are calculated simultaneously with reconciliation. The optimiza-
tion problem solved in this step is given by eq 16, being (ymk,umk)
and (yk,uk) the sets of measured and reconciled variables from
Table 6, respectively; and h(y,u,η) the whole energy system
model. For this case, matrices A and B were assumed to be
diagonal matrices, whose nonzero elements are the variances of
the corresponding measured variables.

Table 4. Nomenclature for Case Study II

symbol item

F flow (kg/h)
P pressure (Pa)
T temperature (K)
Xmed solids mass fraction
Cp heat capacity (kJ/kg·K)
V evaporator steam used in next effect (kg/h)
Q boiler fuel use (kJ/h)
W turbine power (kW)
c evaporation coefficient (kg/m2·°C)
Subscripts
cb boiler
tb backpressure turbine
tg extraction-condensing turbine stage
e evaporator effect
Superscripts
o outlet stream
sat saturated (water or steam)

Table 5. Model and Real Plant Equations. Case Study II

performance factors real plant (ηj = p(xj)) RTO model (ηj = pm(xj))

Boiler 1 efficiency 89.975 − 0.001(140 − Fcb1
0 )2 − 10−6(Fcb1

0 )3 92 − 0.005(150 − Fcb1
0 )2

Boiler 2 efficiency 91−0.001(155 − Fcb2
0 )2 − 1.2 × 10−6(Fcb2

0 )3 92 − 0.005(150 − Fcb2
0 )2

TG Stage 1 efficiency 53 − 0.0023(120 − Ftg1)
2 + 1 × 10−6(Ftg1

0 )3 70 − 0.005(130 − Ftg1
0 )2

TG Stage 2 efficiency 66−0.0018(50−Ftg20 ) + 2.2 × 10−6(Ftg2
0 )3 + 10−2Ttg1

0 70 − 0.004(41 − Ftg2
0 )2

evaporation coefficients (e = 1, ..., 5) (0.0012 − 0.0001e)(96 − Xe
med)(Te−1

sat − 54) − 0.2(Xe
med/100)2 − 0.5 exp(−(Te−1

sat − 50)/100) 0.001(100−Xe
med)(Te−1

sat −
54)

Table 6. Measured Values and Variances. Case Study II

variable measurement points σ2

flow F1,F2,F8,F9,F19,F25,F26,F28,F29,F30,F35 0.09 (t/h)2

efficiency ηcb1,ηcb2 0.36 (%)2

temperature T1,T2,T8 0.25 (°C)2

TG electric power WTG 625 (kW)2

evaporator effect steam
temperature

T1
sat,T2

satT3
sat,T4

sat,T5
sat 0.25 (°C)2
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Table 7 shows the process values that are fixed in this case
study. Table 8 lists the initial operating point for all examined
scenarios.

The following step is a model adaptation. Alternative 2 was
selected since more stable results than Alternative 1 were
observed in the vicinity of the optimum in Case Study I, as well as
because the quadratic regression of the data provides a correction
that is valid in a wider region than the gradient correction of
Alternative 1.
The adaptation procedure is formulated as follows:
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(36)

It can be noticed that boiler and turbine efficiencies are corrected

with a quadratic function, while evaporation coefficients are

modified with a linear function of the live steam to effect 1.

Parameters cjk are only allowed to be different to 0 for RTO cycles

with k > 4.
The real plant model allows a lower temperature difference in

each evaporator effect. The reason for using this constraint back-

off in the RTO model is to ensure feasibility: uncertainty in

measurements together with plant-model mismatch can lead to

RTO solutions that are infeasible for the real system, as it was

mentioned in the Introduction section.
The real-time optimization problem is formulated as follows:

Table 7. Fixed values. Case Study II

variable value

high pressure steam (bar) 80
medium pressure steam (bar) 10
low pressure steam (bar) 0.8
TG condenser pressure (bar) 0.35
boilers steam temperature (°K) 650
juice flow (t/h) 500
initial Brix (°Bx) 15
final Brix (°Bx) 65
evaporator area, e = 1, ..., 5 (m2) 2000
turbines efficiency, tb = 1, ..., 4 (%) 50
turbines power, tb = 1, ..., 4 (kW) 500

Table 8. Initial Operating Point. Case Study II

variable value

Fcb1
o (t/h) 70

Fcb2
o (t/h) 158.9

Ftg1
i (t/h) 100

Ftg1
o (t/h) 70

VBe1 (t/h) 139.0
VBe2 (t/h) 12.4
VBe3 (t/h) 15.8
steam demand d0 (t/h) 200
power cost cW,k ($/kWh) 0.018

Figure 10. Case Study II, scenario 1. Objective function for constant steam demand and constant power price.
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Figure 11. Case Study II, scenario 2. Objective function for variable steam demand and constant power price.

Figure 12. Case Study II, scenario 3. Objective function for constant steam demand and variable power price.
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where h is the whole model, pm is the original model’s
performance equation, and γjk is the performance equation
adaptation function in cycle k. yL and yU are lower and upper
bounds for y. cW,k and dk are the power price and steam demand in
cycle k, respectively.
Figure 10 shows the resulting cost evolution for 30 RTO cycles

for scenario 1 together with the constant power price and steam
demand profiles. Noise-free cases are also shown for this scenario
in order to illustrate the convergence of the RTO approaches. It
can be observed that the proposed strategy converges to the real
plant optimal cost in the noise-free case, while a strategy without
gradient correction (called hereafter NGC) converges to a
different operating point, as expected. When measurements
noise is present, the performance decreases in both approaches,
but the proposed strategy shows a significant comparative
improvement with respect to the other one.
Although the gradient correction neglects the dependence of

TG stage 2 efficiency with extraction steam temperature (which
is a function of the TG inlet flow and steam conditions),
convergence to the vicinity of the real-plant optimum is achieved.
This is because the effect of this variable is small. In fact, the
impact of stage 1 extraction temperature on this efficiency is

considered implicitly in the biasing term a4k, and not in the
gradient correction terms.
Figure 11 shows the results obtained for scenario 2, together

with the variable steam demand profile along the RTO cycles. It
is assumed that Gaussian noise is present in the measurements in
all examined scenarios. The proposed strategy outperformsNGC
in each of the RTO cycles (except in k = 2, i.e. when there is few
data for adapting the performance equations) for the simulated
demand profile and the selected tuning parameters (N, wi).
Figure 12 shows the results obtained for scenario 3, together

with the variable power price profile. The suggested strategy
performs in a better way, except for cycle k = 2, that is, when there
is few data for adapting the performance equations. This behavior
can also be observed in scenario 1 (Figure 10), as prices and
demand are the same for all scenarios for 0≤ k≤ 4. It can also be
seen that after a change in the power price in cycle k, the cost in k
+ 1 is slightly farther from the optimum than the previous cost.
This is due to the fact that the optimal inputs were calculated for
the price corresponding to the previous cycle.
Figure 13 shows the results obtained for scenario 4, which

combines variable demand and variable price profiles. Again, the
suggested strategy performs better than the traditional one for all
optimization cycles except for k = 2.
Table 9 shows the Extended Design Cost evaluation for all

scenarios. The total deviation from the real plant optimum is
evaluated for all RTO cycles and for the period elapsed from k = 6
to the end, when the system is considered to be correctly
initialized (i.e., with enough data to obtain accurate values in the
correction terms) and close to the convergence to the real plant
optimum in the proposed adaptation strategy. The results show
significant improvements by applying the suggested gradient
correction approach. Comparison of noise-free and Gaussian
noise cases for scenario 1 show that the performance of
Alternative 2 is highly affected by noise. Indeed, when
convergence has been reached (k ≥ 6), the increase in EDC
computed for the Gaussian noise case is almost 3 times larger
than the noise-free case (125 vs 48.5). Relative EDC values are
very similar for scenarios 2, 3, and 4, with improvements of
around 50% if all cycles are considered, and 60−70% for k ≥ 6.

Figure 13. Case Study II, scenario 4. Objective function for variable steam demand and variable power price.
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The results obtained in this case study indicate that the
proposed approach can be implemented in processes having a
high number of inputs due to the simplicity of the
implementation and the better performance with respect to the
traditional (no gradient correction) approach.

5. CONCLUSIONS AND FURTHER WORK
An alternative modifier adaptation approach was proposed for
real-time optimization. It exploits the fact that, for certain types
of processes, the plant-model mismatch can be concentrated in a
set of performance or efficiency equations, while rigorous mass,
energy and entropy balances are considered as exact. These
performance equations are often a function of a set of variables
that has fewer elements than the set of all process inputs;
therefore, the number of RTO cycles that must provide data for
the gradient estimation problem and for the additional dual
control constraints is reduced with respect to those suggested in
the literature.
The application of the proposed approach to systems

presenting such structure, like heat and power systems, results
in faster and more reliable adaptation, and consequently, in an
improved real-time optimization performance in terms of
operating cost and sensitivity to noise.
The approach was developed by considering the character-

istics of heat and power systems. Nevertheless, it can be applied
to other types of processes, in particular to those that involve
networks of several pieces of equipment or unit operations, for
example in a plant-wide real-time optimization scheme.
Two alternatives have been developed based on performance

equations adaptation: (i) a numerical gradient estimation
combined with an exponential filter, and (ii) a quadratic
regression of past data. This regression allows adapting the
equations with more terms (in addition to the bias and gradient
correction terms of other approaches), expanding the region
where the adaptation is valid.
The two case studies analyzed in this work show that the

proposed approach converges to the real plant optimum, like
other gradient correction strategies. Moreover, in the examined
scenarios it outperforms other approaches. Case Study II, which
deals with the heat and power system of a sugar and ethanol
plant, shows that performance equations adaptation can be

applied to real-time optimization of heat and power systems, and
that it is a suitable alternative for systems with a large number of
inputs.
The method does not imply necessarily the involvement of

simplified models. On the contrary, detailed models based on
first principles and physical properties are adequate to implement
this approach, as the sources of structural mismatch can be
detected and related to an empirical performance equation.
The application of the proposed strategy requires a previous

modeling and identification effort, in order to build a model
which separates the performance equations from the rest of the
rigorous balances, and to detect which variables impact on each
performance index in a significant way.
Performance equations adaptation does not exclude the use of

strategies like ISOPE or the original modifier adaptation method.
Moreover, the proposed approach can be combined with them or
included as the gradient estimation strategy, while following the
procedures and dual control criteria of those methods. The
advantage in this case is that the model structure and the proper
use of the data would reduce the gradient estimation problem, in
comparison with the calculation of each gradient with respect to
all process inputs, which does not make use of the knowledge of
the process to be optimized.
Another alternative that can be studied is to update the

performance equations with an independent parameter
estimator (as done in certain control applications),45 which can
work at a higher frequency than the real-time optimizer.
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(43) Hugot, E. Handbook of Cane Sugar Engineering; 3rd ed.; Elsevier
Science Publishers B.V: Amsterdam, The Netherlands, 1986.
(44) Golato, M. A.; Franck Colombres, F. J.; Aso, G.; Correa, C. A.;
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