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1. Introduction 

Traditionally, processes and controllers are designed sequentially. Firstly, the process 
configurations (structures) and parameters are designed to satisfy the economic objectives, 
such as maximum profit or minimum operational costs. The designs are based on steady 
state models, and they are subjected to the operational constraints. Then, the controllers are 
designed, with a focus on rejecting the possible effects of external disturbances and process 
uncertainties, and achieving the desired dynamic performance. This approach carries a risk 
in that it may end up choosing the cheapest process design that can prove difficult to 
control. It may also miss out a slightly less economic but easier to control design, the one 
that might be more profitable in the long run (Weitz & Lewin, 1996). 
Operability properties of a process determine how process dynamics affect the quality of a 
process control design. These include flexibility, controllability, optimality, stability, 
selection of measurements and manipulated variables. The flexibility is defined as ‘the 
ability to maintain the process variables within the feasible operational region, despite the 
presence of uncertainties’ (Grossman et al., 1983). Flexibility is often considered 
simultaneously with the economic objectives and hence the optimality issue is raised. As a 
consequence, flexibility studies are dominated by numerous optimization strategies. Those 
studies aim at the determination of flexible operational spaces and flexibility measurements. 
The analysis generally involves two complementary tasks, the calculation of the flexibility 
index and the flexibility test.  
Operational flexibility is an important issue when designing and operating a chemical plant. 
Very often, flexibility is concerned with the problem of ensuring a feasible steady-state 
operation over a variety of operating uncertainties. To quantify how flexible a process is 
many metrics have been developed. Grossmann et al. (1983) first introduced the flexibility 
index FIG which quantifies the smallest percentage of the uncertain parameters' expected 
deviation that the process can handle. Another metric named resilience index RI was 
adopted by Saboo et al. (1985). These two measurements -FIG and RI– require identification 
of the nominal point, which must be located within the feasible region. These measurements 
however only take the critical uncertainty into account. This may cause serious flexibility 
under-estimation or neglect the ability of the process to handle other process uncertainties. 
To solve this problem, Pistikopoulos and Mazzuchi (1990) proposed an index called 
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stochastic flexibility, SF, that is determined from the probability distribution of all the 
uncertain parameters. Although SF accounts for the chance that the process can operate 
feasibly, the probability distribution of all the uncertain parameters may not be available at 
the design stage. Even though the probability distributions can be obtained, the calculation 
of SF is usually tedious. To avoid this difficulty, Lai and Hui (2007) proposed the index FIV. 
This was calculated as the size ratio of the feasible space to the overall space bounded by the 
expected limits of the uncertain parameters. The feasible space is the subspace of the overall 
space in which the uncertain parameters can be feasibly handled. The index SF and FI 
belong to the interval [0, 1]; a higher value means a higher flexibility. 
In this work several flexibility indexes for a multi-stage flash (MSF) desalination plant were 
estimated. To mimic the plant operation a stationary simulator was developed, and the 
determination of the feasible space was carried out with Monte Carlo simulation 
(Metropolis & Ulam, 1949; Rubinstein & Kroese, 2007). This approach does not involve an 
optimization model, but only a simulation one; hence the implementation is more simple 
and robust than other approaches. Finally, the proposed method yields additional 
information besides the flexibility indexes, and the relevance of this additional information 
shows the potential of this approach. 

2. Mixing tank modelling 

The strategy of the proposed flexibility study will be introduced by using a simpler system, 
a mixing tank, as shown in Fig. 1. In this system, stream F1, water at 25 °C, and stream F2, 
water at 80 °C, are mixed to yield a new stream at 52 °C. The pressure at the valve V1 input 

is 1.115105 Pa. The volumetric flow rate of F2 is 0.02 m3/s. The tank is open and discharges 
to the atmosphere; its diameter is 1.5 m and the maximum allowed liquid level is 2 m. The 
controller CT (a P+I controller) controls the tank temperature T, and the controller CL (a P 
controller) controls the tank level L; the respective set points are 52 °C and 1 m. 
 

 

Fig. 1. Mixing tank. 
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The dynamic model for the mixing tank comprises the following equations: 

 1 2 3F F FdL

dt A

 
  (1) 

    1 1 2 2F T T F T TdT

dt AL

  
  (2) 

 T
T

dAi
e

dt
  (3) 

 
Te T Tsp   (4) 

 
1 T T T T

T

1
x Ab K e Ai

i
 

   
 

 (5) 

 
Le L Lsp   (6) 

 3 L L Lx Ab K e   (7) 

 
1 v1 1 1 0F C x P P   (8) 

 
3 v3 3F C x gL  (9) 

Table 1. presents the list of variables used in the previous model. The parameters of 
controller CT are Tsp = 52 °C, AbT = 0.5, KT = 0.05 °C-1 and iT = 30 s; the parameters of 
controller CL are Lsp = 1 m, AbL = 0.5 and KL = 20 m-1. The valve parameters are 
Cv1 = 4.03910-4 m3.5/kg0.5 and Cv3 = 8.07810-4 m3.5/kg0.5. 
 

i: integral time constant (s). 
A: cross sectional area (m2). 

Ab: controller bias. 
Ai: integral effect of CT (s °C). 

AL: output of CL. 
Cv: valve flow coefficient (m3.5/kg0.5). 

eL: controller error of CL (m). 
eT: controller error of CT (°C). 
F: volumetric flow rate (m3/s). 

KL: gain of CT (°C-1). 
KT: gain of CT (m-1). 

L: level (m). 
Lsp: set point of CL (m). 

P: pressure (atm). 
T: temperature (°C). 

t: time (s). 
Tsp: set point of the CT (°C). 

x: valve opening.

Table 1. Variables of the mixing tank model. 
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The steady model is obtained from the dynamic one by setting to zero all the derivative 
terms. The resulting model contains 9 equations and 9 unknowns (F1, F3, T, L, eT, x1, eL, x3 
and AiT). If T, eT, eL and AiT are removed, the model can be reduced to the following 
equations: 

 
 
 

2
1 2

1

T Tsp
F F

Tsp T





 (10) 

 1
1

v1 1 0

F
x

C P P



 (11) 

 3 1 2F F F   (12) 

L and x3 are calculated from the two following equations: 

 3 v3 3 0x C gL F    (13) 

  L L 3 0Ab K L Lsp x     (14) 

3. Standardization of variables 

In the proposed method every variable has to be standardized as follows: 

 
X Xn

X
Xn

 



 (15) 

where X is the actual value of the variable, Xn is the nominal value that was considered for 

the variable during the system design, and Xn is the half-band of acceptable variability for 

the variable. As it can be deduced, X is a dimensionless value that belongs to the open 
interval (-1, 1) under normal conditions, and it takes the null value at the nominal condition. 
This study considers two set of variables. The first set, called D, is formed by the 
disturbances; the second one, called Y, is formed by the other process variables (i.e. all the 
variables of the process, disturbances not being included). In the case of the mixing tank, the 
selected disturbances are F2 and T2; whereas the selected process variables are x1 and x3. 

4. Overall and feasible spaces 

According to the above definitions, the overall space bounded by the expected limits of the 

uncertain parameters (Lai & Hui, 2007) can be defined as: 

 1 DjX j     (16) 

On the other hand, the feasible space in which the uncertain parameters can be feasibly 

handled (and where the process is operable) can be defined as: 

 1 YjX j     (17) 
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In order to determine whether the process is operable or not in a given point of the overall 
space, it is convenient to define the operability index in the following way: 

  
Y

max j
j

Io X


  (18) 

While Io, the maximum observed deviation of the process variables, belongs to the interval 
[0, 1) the process is operable because the deviations of all process variables are lower than 
their respective acceptable variabilities. This index is used to determine the feasible space, 
which is formed by all the process states with Io belonging to the interval [0, 1).  
Fig. 2 shows the overall space for two disturbances, D1 and D2. A square circumscribed 
about a circle of radius r and centre (0, 0) is also shown in that figure. That square is called 
the maximum square if it is the largest square that can be defined in the feasible space. 
 

D2

D1

r

+1

-1 0

0

-1
+1

 

Fig. 2. Overall space and maximum square. 

The probability that the disturbances yield a point inside the maximum square depends on the 
probability distributions associated to the disturbances. If every disturbance follows the 
uniform distribution (Fig. 3) that probability has the distribution plotted in Fig. 4. Conversely, 
if every disturbance follows the triangular distribution (Fig. 5) that probability has the 
distribution shown in Fig. 6. Both distributions (in Fig. 4 and Fig. 6) were obtained by Monte 
Carlo simulation with a sample of 10000 points (Metropolis & Ulam, 1949; Rubinstein & 
Kroese, 2007). 
 

f D( )

D-1.0 0.0

1.0

+1.0  

Fig. 3. Uniform distribution for D. 
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Fig. 4. Probability density distribution of r for uniform distribution of D. The median is 0.71. 

 
f D( )

D-1.0 0.0

1.0

+1.0  

Fig. 5. Triangular distribution for D. 
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r  

Fig. 6. Probability density distribution of r for triangular distribution of D. The median is 0.46. 
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For both the uniform and triangular distributions, it is possible to determine analytically the 
respective probability density function -pdf- f(r) and the cumulative distribution function 

-cdf-  
0

( )
r

F r f t dt   (Rose & Smith, 2002) associated to the maximum hypercube of 

dimension n (maximum square if n = 2). If every disturbance follows the uniform 
distribution, the corresponding pdf and cdf for the maximum hypercube of dimension n are: 

 1( ) nf r nr   (19) 

 ( ) nF r r  (20) 

If every disturbance follows the triangular distribution, the corresponding pdf and cdf for 
the maximum hypercube of dimension n are: 

     
12( ) 2 2 1 1

n
f r n r r r r


     (21) 

   2( ) 2 1
n

F r r r r    (22) 

Then, the probability that the combination of disturbances were constrained to the 
maximum square defined by r is equal to F(r). 
If every disturbance follows a normal distribution (Fig. 7) the probability of the disturbances 
yielding a point inside the maximum square has the distribution plotted in Fig. 8. The 
distribution was obtained by Monte Carlo simulation with a sample of 10000 points. In 
contrast to the case of the uniform and triangular distributions, it is not possible to obtain 
analytical expressions of f(r) and F(r) when the disturbances are normally distributed. For 
this reason, Monte Carlo simulation was again used to determine F(r) (Fig. 9). A good 
approximation for F(r) is achieved by data regression, this approximation has a maximum 

error of 0.04, and is equal to   3.7664
( ) exp 3.6109 1F r r   . 

 

f D( )

D-1.0 0.0

1.0

+1.0  

Fig. 7. Normal distribution for D with µ = 0,  = 1/3. 
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Fig. 8. Probability density distribution of r for normal distribution of D. The median is 0.35.  

 

0.0

0.5

1.0

0.0 0.5 1.0

F(r)

r  

Fig. 9. Cumulative distribution function of r for normal distribution of D. 

The maximum hypercube is useful because it makes it easy to verify whether a given 
operating point is inside it. This is a sufficient condition to guarantee the process operability. 
If the point is outside the maximum square, a deeper analysis is needed such as the outlined 
below.  

5. Flexibility study of the mixing tank 

Table 2 presents the nominal values and variability half-bands adopted in the case of the 
mixing tank. Fig. 10 shows the corresponding feasible space (without shadow). Several 
simulations were run to obtain that figure. In each simulation, a particular combination of 
disturbances was generated, equations (10)-(14) were solved, and the operability index Io 
was calculated to determine the operability of that point. When Io was lower than 1, that 
point was marked as belonging to the feasible space.  

www.intechopen.com



 
Flexibility Study for a MSF by Monte Carlo Simulation 

 

131 

According to Fig. 10, the process is not operable for T2 below 52 °C (the set point value of 
controller CT), a constant limit. However, the upper limit for T2 is a function of F2. The 
radius r of the inscribing circle into the maximum square is equal to 0.42. By using the 
corresponding cfd, it can be estimated that the maximum square covers 18% of the possible 
cases if every disturbance has uniform distribution. The covered cases are 44% when every 
disturbance follows the triangular distribution. 
 

 F2 (m3/s) T2 (°C) x1 x3 

Xn 0.02 80 0.5 0.5 

Xn 0.01 40 0.5 0.5 

Table 2. Nominal values and half-bands of acceptable variability for the case of the mixing 
tank. 

 

T2

F2

r

+1

-1 0

0

-1
+1

 

Fig. 10. Mixing tank example. Feasible space of operation (without shadow), r = 0.42. 

Fig. 11 shows the values adopted by the process variables Y inside the feasible space. 
Several simulations were run to obtain that figure (the same ones used to determine the 
feasible space). In each simulation, a particular combination of disturbances was generated, 
and the corresponding values of the process variables were calculated. If the process state 

thus generated belonged to the feasible space –Io belonging to the interval [0, 1)–, x1 and x3 
were added to the plot as ’pair n’. 
According to Fig. 11, the most critical variable is x1 because it reaches the limits of acceptable 

variability. More precisely, x1 reaches the value 1, which means x1 reaches its highest allowed 
value. Therefore, the feasible space can be expanded by acting on the sector supervised by the 
CT controller; e.g. increasing the size of the valve V1 or decreasing the temperature T1. In fact, 
it is evident from eq. (11) that it is possible to reduce x1 (the critical variable) by only increasing 
Cv1 (the size of valve V1) and without changing the other variables.  
From the results of Fig. 11, it can also be deduced that the reduction of x1 will cause that 
some process states become now feasible states, augmenting in this way the feasible space. 
This is one of the several conclusions that can be obtained from that figure and 
demonstrates one advantage of the proposed method. To prove that the previous conclusion 
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was correct, a new test was made and the new feasible space was determined after 
multiplying Cv1 by two. The new feasible space thus obtained was bigger than the original 
one. The same conclusion was again obtained though it required many more simulations. 
The usefulness of the information presented by Fig. 11, a contribution of the proposed 
method, cannot be overemphasized.  
 

-1.0

-0.5

0.0

0.5

1.0

0 50 100 150

X

n

dx1

dx3

x1

x3

 

Fig. 11. Mixing tank example. Process variables in the feasible space. 

Fig. 12 shows the process states corresponding to the representative points of the overall 
space. These points were explored by the simulations used before for defining the feasible 
space. The figure is a plot with parallel coordinates; this is a common way of visualizing 
high-dimensional geometry and analysing multivariate data. To show a set of points in an n-
dimensional space, a backdrop is drawn consisting of n parallel lines, typically vertical and 
equally spaced. A point in that n-dimensional space is represented as a polyline with 
vertices on the parallel axes; the position of the vertex on the i-th axis corresponds to the i-th 
coordinate of the point. In this work, the set of represented points correspond to the studied 
process states, i.e. every plotted polyline represents a particular steady state. The vertical 
axis represents the studied variable, e.g. Fig. 12 has axis for F2, T2, x1 and x3. 
In Fig. 12 every point of the overall space is depicted by a line linking the values 

corresponding to all the considered X. For the sake of clarity, the vertical axis 
corresponding to the process variables are not drawn. Among those points only those with 

absolute values of x1 and x3 lower than 1 are operable and hence belong to the feasible 
space. That figure also shows that x1 is the most critical variable. Moreover the strong effect 
of T2 over x1 is evident: decreasing T2 is more risky than increasing it. x1 is indeed the most 
critical variable because it has more values out of the (-1, 1) interval. The effect of T2 on x1 
provokes that the polylines associated to an increase of T2 are also associated to an increase 
of x1. An equivalent but weaker relation exists between the decrease of T2 and the decrease 
of x3. This conclusion is just one of the many that be inferred from Fig. 12. This demonstrates 
another advantage of the proposed method. 
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Fig. 12. Mixing tank example. Representative points of the overall space. 

6. Flexibility indexes 

Different kinds of indexes have been defined for representing the process flexibility. In 
general, the better the index the more complex is its calculation. That’s why at the first 
stages of the process design simpler indexes should be used. Conversely, at the final stages 
of the design the most exact indexes should be calculated. In line with this reasoning several 
indexes were evaluated for the mixing tank. Those indexes are presented below, ordered by 
increasing quality and complexity.  
The first index is Iv. It is equivalent to FIG (Grossmann et al., 1983) while FIG  1. Iv is 
defined as: 

 Iv r  (23) 

where r is the radius of the circle tangential to the maximum square. 
The second index is Ic, which is defined as the ratio of the size of the maximum hypercube 
of dimension n (maximum square if n = 2) to the size of the overall space: 

 nIc r  (24) 

The third index is Ir, which is defined as the size ratio of the feasible space to the overall 
space –it is equivalent to FIV (Lai & Hui, 2007)–. All the above indexes belong to the interval 
[0, 1], and the value 1 represents the maximum flexibility. 
The indexes Iv and Ic are conservative because they take into account a subspace (i.e., the 
maximum square or hypercube) of the whole feasible space. They also rely on geometric 
ratios between the feasible space and the overall space. This is adequate when every 
disturbance follows the uniform distribution. However this is also a limitation of Ir. For 
other distributions, it becomes necessary to define additional indexes. The fourth defined 
index would be Pc, the probability that the disturbances yield a point inside the maximum 
square (or hypercube). This depends on the probability distributions of the disturbances. 
Equations (20) and (22) are used to calculate Pc in the cases of uniform and triangular 
distributions, respectively. For other distributions, Monte Carlo simulation can be instead 
used, as was previously outlined for the normal distribution (Fig. 7-Fig. 9). The fifth and last 
index is Pr, the probability of the disturbances yielding a point inside the feasible space. It is 
equivalent to SF (Pistikopoulos & Mazzucchi, 1990), which also depends on the disturbances 
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probability distributions. Pr is the index most difficult to calculate. In this work Pr was 
calculated by Monte Carlo simulation with 10000 samples. 
Table 3 shows all the defined indexes calculated for the mixing tank example. For the 
calculation, it was assumed that the disturbances probability distributions were triangular. 
When the disturbances produced a point into the feasible space, the process was by 
definition considered operable at those conditions. Therefore, the higher the probability of 
the disturbances yielding a feasible point the higher the probability of the process of being 
operable –i.e., the process is more flexible–. From all the indexes presented in Table 3 the 
more realistic and useful is Pr, which represents the probability that the process be operable. 
While the value 0.88 may prove enough for some experts, this can be improved by 
expanding the feasible space as it was done when studying Fig. 11 and Fig. 12.  
 

Iv Ic Ir Pc Pr 

0.42 0.18 0.68 0.44 0.88 

Table 3. Flexibility indexes of the mixing tank. 

As stated before almost all the indexes, except Pr, are conservative. The values reported in 
Table 3 show how conservative these indexes can be. For example, Ic assigns a value of 0.18 
to the mixing tank, suggesting a rather poor flexibility; Pr, in contrast, assigns a much better 
value. The difference between these values is a strong evidence of the convenience of 
utilizing Pr for flexibility studies. 

7. MSF modelling 

The strategy proposed for performing flexibility studies was applied to the analysis of a MSF 
desalination plant (Fig. 13). This kind of plant has a series of flash units (stages) where sea 
water is evaporated to obtain distilled water. The plant has N stages; the first M ones belong to 
the recovery section and the remaining ones belong to the rejection section. There are also six 
P+I controllers that set the operating conditions for the heater, the feed, the recycle and the 
level of the last stage. 
 

Heat recovery section Heat rejection
section

1 2 3 ... j ... M M+1 k N

T

F

L

R

T

F

Rejected
sea water

Sea water

Product

Blow-down

Heat input
section

Steam

Condensate

Recycle

Make-up

CH

H1

VH

VR

VL

VM

VW

VT

BW

CR

CL

CM

CW

CT

BR

 

Fig. 13. Simplified scheme of the studied MSF plant.  

www.intechopen.com



 
Flexibility Study for a MSF by Monte Carlo Simulation 

 

135 

For the dynamic model of the MSF plant an early model developed by Tarifa and Scenna 
(2001) was used. This comprises a set of ordinary differential equations and a set of 
algebraic equations. The steady model was obtained by setting to 0 every derivative term. 
The model parameters were adjusted to represent the system studied by Thomas et al. 
(1998). This system has 15 stages in the recovery section and 3 stages in the rejection section. 
Table 4 shows the adopted operating conditions. 
 

Sea water: 

Tsw = 28 °C 

Xsw = 51500 ppm 

Vapour: 

Pvh = 0.937 atm 

Controller set points: 

T0s = 90 °C 

Ls = 0.6 m 

Wcws = 14800 tn/h 

Tcws = 33 °C 

Rmus = 4.6 

Wbs = 14380 tn/h 

Table 4. MSF plant. Operating conditions. 

8. Flexibility study of the MSF plant 

The disturbances considered were the seawater temperature Tsw and the seawater salinity 
Xsw. These variables show a wide range of variability and they have large effects on the 
operation of MSF plants (Tanvir & Mujtaba, 2006). The studied process variables were those 
presented in Table 5. 
 

AL: output of CL 

AWmu: output of CM 

AT0: output of CH 

ATcw: output of CT 

AWb: output of CR 

AWcw: output of CW 

Table 5. MSF plant. Process variables selected for the study. 

Table 6 shows the nominal values and half-bands of variability adopted for the MSF plant. 

For each process variable, its half-band of variability Xn was set equal to 80% of the 
corresponding nominal value Xn. 
 

 Tsw (°C) Xsw AL AWmu AT0 ATcw AWb AWcw 

Xn 30 0.0515 0.35 0.42 0.54 0.32 0.53 0.22 

Xn 5 0.0165 0.28 0.34 0.43 0.26 0.42 0.18 

Table 6. MSF plant. Nominal values and half-bands of acceptable variability. 
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Fig. 14 shows the feasible space (without shadow) of operation of the MSF plant. That feasible 
space was obtained by simulation, a process that proved time consuming due to the model 

complexity. The simulations were performed taking samples in steps of 0.20 for both Xsw and 

Tsw. The radius r of the circle inside the maximum square was equal to 0.40. According to the 
simulations the process was not operable for values of Tsw higher than 33 °C (constant limit, 
also the set point value of the CT controller). On the other side, the lower limit for Tsw was a 
function of Xsw. The upper limit of Tsw corresponded to a value of r of 0.60. Therefore the 
actual radius belonged to the interval [0.40, 0.60). Taking the worst case, r becomes equal to 
0.40. By using the corresponding cfd it was estimated that the maximum square covered 16% 
of the possible cases when every disturbance had uniform distribution. The covered cases 
were 41% when every disturbance followed the triangular distribution. 
 

Xsw

Tsw

r

+1

-1 0

0

-1
+1

 

Fig. 14. MSF plant. Feasible space (without shadow) for r = 0.40. 

Fig. 15 presents the values adopted by some of the analysed process variables inside the 
feasible space. The remaining ones were not plotted because their changes were not 
meaningful. The most critical variable are ATcw and AWcw because they reach the limits of 
acceptable variability; therefore, the feasible space can be expanded by acting on the sectors 
supervised by the controllers CT and CW (e.g. increasing the size of corresponding valves). 
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Fig. 15. MSF plant. Process variables in the feasible space. 
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Fig. 16 shows representative points of the overall space of operation of the MSF plant. Every 

point is depicted by a line linking the values corresponding to all the considered X. Of 

those points, only those with absolute values of ATcw and AWcw lower than 1 are 
operable. The figure also shows that both process variables, ATcw and AWcw, are critical. 
Moreover, the strong effect of Tsw on ATcw and Awcw is evident. Increasing Tsw values are 
more risky than decreasing ones. 
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Fig. 16. Representative points of the overall space for the MSF plant. 

Finally, Table 7 shows the previously defined indexes as calculated for the case study of the 
MSF plant. In the calculation triangular distributions for the disturbances were again 
assumed. 
 

Iv Ic Ir Pc Pr 

0.40 0.16 0.68 0.41 0.82 

Table 7. MSF plant flexibility indexes. 

9. Conclusion 

A strategy for performing a flexibility study was presented and it was applied to an 
introductory simple example and to a complex case study of a multistage flash plant. The 
strategy begins with the development of a steady-state model of the analysed process. Next, 
the main disturbances and process variables are identified. Those variables are then 
properly standardized. The feasible space is determined by simulation. At this point, a set of 
indexes can be evaluated and the process flexibility estimated. 
The proposed methodology allows to calculate the probability associated to the feasible 
space. It also enables the identification of the critical variables of the process; which can then 
be modified at the implementation level (changing equipment design parameters) in order 
to increase the flexibility. The inverse problem can also be considered, i.e. determining the 
effects on the process flexibility produced by a modification of some components or 
parameters of the plant. Then, the new feasible space, its new associated probability and the 
involved costs will together establish the convenience of such modification. 
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