93 research outputs found

    Embedded metal oxide plasmonics using local plasma oxidation of AZO for planar metasurfaces

    Get PDF
    New methods for achieving high‐quality conducting oxide metasurfaces are of great importance for a range of emerging applications from infrared thermal control coatings to epsilon‐near‐zero nonlinear optics. This work demonstrates the viability of plasma patterning as a technique to selectively and locally modulate the carrier density in planar Al‐doped ZnO (AZO) metasurfaces without any associated topographical surface profile. This technique stands in strong contrast to conventional physical patterning which results in nonplanar textured surfaces. The approach can open up a new route to form novel photonic devices with planar metasurfaces, for example, antireflective coatings and multi‐layer devices. To demonstrate the performance of the carrier‐modulated AZO metasurfaces, two types of devices are realized using the demonstrated plasma patterning. A metasurface optical solar reflector is shown to produce infrared emissivity equivalent to a conventional etched design. Second, a multiband metasurface is achieved by integrating a Au visible‐range metasurface on top of the planar AZO infrared metasurface. Independent control of spectral bands without significant cross‐talk between infrared and visible functionalities is achieved. Local carrier tuning of conducting oxide films offers a conceptually new approach for oxide‐based photonics and nanoelectronics and opens up new routes for integrated planar metasurfaces in optical technology

    Optical transmission matrix as a probe of the photonic strength

    Get PDF
    We demonstrate that optical transmission matrices (TM) of disordered complex media provide a powerful tool to extract the photonic interaction strength, independent of surface effects. We measure TM of strongly scattering GaP nanowires and plot the singular value density of the measured matrices and a random matrix model. By varying the free parameters of the model, the transport mean free path and effective refractive index, we retrieve the photonic interaction strength. From numerical simulations we conclude that TM statistics is hardly sensitive to surface effects, in contrast to enhanced backscattering or total transmission based methods.We acknowledge support from ERC grant 27948, NWOVici, STW, the Royal Society, and EPSRC through fellowship EP/J016918/1

    Directional emission of light from a nano-optical Yagi-Uda antenna

    Full text link
    The plasmon resonance of metal nanoparticles can enhance and direct light from optical emitters in much the same way that radio frequency (RF) antennas enhance and direct the emission from electrical circuits. In the RF regime, a typical antenna design for high directivity is the Yagi-Uda antenna, which basically consists of a one-dimensional array of antenna elements driven by a single feed element. Here, we present the experimental demonstration of directional light emission from a nano-optical Yagi-Uda antenna composed of an array of appropriately tuned gold nanorods. Our results indicate that nano-optical antenna arrays are a simple but efficient tool for the spatial control of light emission.Comment: 4 pages, including 4 figure

    Light-Induced Reversible DNA Ligation of Gold Nanoparticle Superlattices

    Get PDF
    DNA-mediated self-assembly of nanoparticles has been of great interest because it enables access to nanoparticle superstructures that cannot be synthesized otherwise. However, the programmability of higher order nanoparticle structures can be easily lost under DNA denaturing conditions. Here, we demonstrate that light can be employed as an external stimulus to master the stability of nanoparticle superlattices (SLs) via the promotion of a reversible photoligation of DNA in SLs. The oligonucleotides attached to the nanoparticles are encoded to ligate using 365 nm light, effectively locking the SLs and rendering them stable under DNA denaturing conditions. The reversible process of unlocking these structures is possible by irradiation with light at 315 nm, recovering the structures to their natural state. Our work inspires an alternative research direction toward postassembly manipulation of nanoparticle superstructures using external stimuli as a tool to enrich the library of additional material forms and their application in different media and environments

    Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators

    Get PDF
    Reflection is a natural phenomenon that occurs when light passes the interface between materials with different refractive index. In many applications, such as solar cells or photodetectors, reflection is an unwanted loss process. Many ways to reduce reflection from a substrate have been investigated so far, including dielectric interference coatings, surface texturing, adiabatic index matching and scattering from plasmonic nanoparticles. Here we present an entirely new concept that suppresses the reflection of light from a silicon surface over a broad spectral range. A two-dimensional periodic array of subwavelength silicon nanocylinders designed to possess strongly substrate-coupled Mie resonances yields almost zero total reflectance over the entire spectral range from the ultraviolet to the near-infrared. This new antireflection concept relies on the strong forward scattering that occurs when a scattering structure is placed in close proximity to a high-index substrate with a high optical density of states

    Phosphorescent Energy Downshifting for Diminishing Surface Recombination in Silicon Nanowire Solar Cells

    Get PDF
    Molecularly engineered Ir(III) complexes can transfer energy from short-wavelength photons (lambda < 450 nm) to photons of longer wavelength (lambda > 500 nm), which can enhance the otherwise low internal quantum efficiency (IQE) of crystalline Si (c-Si) nanowire solar cells (NWSCs) in the shortwavelength region. Herein, we demonstrate a phosphorescent energy downshifting system using Ir(III) complexes at short wavelengths (300-450 nm) to diminish the severe surface recombination that occurs in c-Si NWSCs. The developed Ir(III) complexes can be considered promising energy converters because they exhibit superior intrinsic properties such as a high quantum yield, a large Stokes shift, a long exciton diffusion length in crystalline film, and a reproducible synthetic procedure. Using the developed 1011) complexes, highly crystalline energy downshifting layers were fabricated by ultrasonic spray deposition to enhance the photoluminescence efficiency by increasing the radiative decay. With the optimized energy downshifting layer, our 1cm(2) c-Si NWSCs with Ir(III) complexes exhibited a higher IQE value for short-wavelength light (300-450 nm) compared with that of bare Si NWSCs without Ir(III) complexes, resulting in a notable increase in the short-circuit current density (from 34.4 mA.cm(-2) to 36.5 mA.cm(-2) )

    Metal nanoparticles for microscopy and spectroscopy

    Get PDF
    Metal nanoparticles interact strongly with light due to a resonant response of their free electrons. These ‘plasmon’ resonances appear as very strong extinction and scattering for particular wavelengths, and result in high enhancements of the local field compared to the incident electric field. In this chapter we introduce the reader to the optical properties of single plasmon particles as well as finite clusters and periodic lattices, and discuss several applications

    Ultraviolet photoconductive devices with an n-GaN nanorodgraphene hybrid structure synthesized by metal-organic chemical vapor deposition

    Get PDF
    The superior photoconductive behavior of a simple, cost-effective n-GaN nanorod (NR)-graphene hybrid device structure is demonstrated for the first time. The proposed hybrid structure was synthesized on a Si (111) substrate using the high-quality graphene transfer method and the relatively low-temperature metal-organic chemical vapor deposition (MOCVD) process with a high V/III ratio to protect the graphene layer from thermal damage during the growth of n-GaN nanorods. Defect-free n-GaN NRs were grown on a highly ordered graphene monolayer on Si without forming any metal-catalyst or droplet seeds. The prominent existence of the undamaged monolayer graphene even after the growth of highly dense n-GaN NRs, as determined using Raman spectroscopy and high-resolution transmission electron microscopy (HR-TEM), facilitated the excellent transport of the generated charge carriers through the photoconductive channel. The highly matched n-GaN NR-graphene hybrid structure exhibited enhancement in the photocurrent along with increased sensitivity and photoresponsivity, which were attributed to the extremely low carrier trap density in the photoconductive channelclose00

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    • 

    corecore